СОДЕРЖАНИЕ

Св	одная таблица уплотнений	2	
Вве	едение	7	
Ta6	олица стандартов уплотнений	8	
	ГИДРАВЛИЧЕСКИЕ УПЛОТНИТЕЛЬНЫЕ		
	<u>ЭЛЕМЕНТЫ ПОРШНЯ</u>		
	СР1 - Уплотнение поршня	12	
	СР2 - Уплотнение поршня	14	
	СР3 - Уплотнение поршня	16	
	СР5 - Уплотнение поршня	18	
	СР5М - Уплотнение поршня	20	
	СР6 - Уплотнение поршня	22	
	СР6М - Уплотнение поршня	24	
	СР7 - Уплотнение поршня	26	
	СР8 - Уплотнение поршня	28	
	СР9 - Уплотнение поршня	30	
	MPI - Уплотнение поршня	32	
	MPN - Манжета поршня	34	
	Манжета поршня и штока(ГОСТ 14896-84;		
	ГОСТ 6969-54; ТУ 38005204-84) ТИП 1, ТИП	36	
	2 и ТИП 3, аналог резиновых манжет(РТИ)		
	ГИДРАВЛИЧЕСКИЕ УПЛОТНИТЕЛЬНЫЕ		
	<u>ЭЛЕМЕНТЫ ШТОКА</u>		
	DP2 - Уплотнение штока	40	
	DP4 - Уплотнение штока	44	
	DP5 - Уплотнение штока	48	
	MPU; MPU/L; MPU/2S - Манжета штока	50	
	MP; MP/L; MP/LA - Манжета штока	54	
	MPS; MPS/L; MPS/LA - Манжета штока	58	
	МТ - Манжета штока	60	
	Манжета штока телескопическая типа «КАМАЗ» н/о	62	
	Манжета штока телескопическая типа «КАМАЗ» с/о	66	
	MZ/L - Манжеты штока телескопические ремонтные	68	
	MZT - Манжеты штока телескопические ремонтные	70	
	МРС - Манжета штока	72	П
	МК/L - Манжета штока	74	Pe
	ГРЯЗЕСЪЕМНИКИ		X
	Z50 - Грязесъемник	78	П
	Z51 - Грязесъемник	80	Tr
	<u> </u>	82	M
	Z52 - Грязесъемник СW - Грязесъемник	84	
	GW - Грязесъемник		
	GWL - Грязесъемник	86	
	GWK - Грязесъемник	88	
	GWR - Грязесъемник	90	
	GWS - Грязесъемник	92	
	GWN - Грязесъемник	94	
	ANS - Грязесъемник	96	

	ANR - Грязесъемник	98
	ANT - Грязесъемник	100
	ANC - Грязесъемник	102
	ANK - Грязесъемник	104
	ANP - Грязесъмник	106
	Грязесъемник типа «КАМАЗ»	108
	Аналог резиновых грязесъемников (РТИ)	110
	СТАТИЧЕСКИЕ УПЛОТНЕНИЯ	
	GRS - Уплотнение статических соединений	116
	GSK - Уплотнение статических соединений	120
	OR - Уплотнение статических соединений	122
	НАПРАВЛЯЮЩИЕ ЭЛЕМЕНТЫ	
	S24 - Кольцо опорно - грязезащитное поршня	126
	S1 - Кольцо опорно - направляющее поршня	128
	S3 - Кольцо опорно - направляющее поршня	130
	S8 - Кольцо опорно - направляющее поршня	132
	S - Кольцо опорно - направляющее поршня и штока	134
	S7 - Кольцо опорно - направляющее поршня и штока	138
	S2 - Кольцо опорно - направляющее штока	142
	S4 - Кольцо опорно - направляющее штока	144
	S5 - Кольцо опорно - направляющее штока	148
	S6 - Кольцо опорно - направляющее штока	150
	S9 - Кольцо опорно - направляющее штока	152
	<u>КОЛЬЦА ЗАЩИТНЫЕ</u>	
	Кольцо защитное (КЗ) крышки для резиновых колец круглого сечения ГОСТ 9833-73 (полиэфир ТРЕ)	156
	ПНЕВМАТИЧЕСКИЕ УПЛОТНЕНИЯ	
	PM - Уплотнение поршня	161
	РМК - Уплотнение поршня	163
	PR - Уплотнение амортизирующее	165
	PS - Уплотнение комбинированное штока	167
	РК - Уплотнение штока	169
	<u>ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ</u>	
p	именяемые материалы	171
2 F	комендации по монтажу уплотнений	172
p	анение уплотнений	175
p	ичины отказов уплотнений	175
20	ебования к местам установки уплотнений	176
[e	тоды контроля посадочных мест	179

ПОРШНЕВЫЕ УПЛОТНЕНИЯ						
Профиль	Тип		неские характер ,		Материал	Стр.
	CP1	давл., MПа 40	2.0	темп. °C -50+100	NBR+PA	12
	CP2	25	0.5	-35+110	NBR+TPU	14
	СРЗ	30 40	0.5 2.0	-50+100 -50+100	NBR+TPE NBR+TPE	16
	CP5	30 40	0.5 2.0	-50+100 -50+100	NBR+TPE NBR+TPE	18
	CP5M	30 40	0.5 2.0	-50+100	NBR+TPE NBR+TPE	20
	CP6	30 40	0.5 2.0	-50+100	NBR+TPE NBR+TPE	22
	СР6М	30 40	0.5 0.5	-50+100	NBR+TPE NBR+TPE	24
	CP7	30 40	0.5 2.0	-50+100	NBR+TPE NBR+TPE	26
	CP8	50	1.5	-50+100	NBR+PA+F4K20 NBR+PA+PTFE	28
	СР9	20	0.5	-35+110	TPU	30
	MPI	40	0.5	-50+100	NBR+PA+TPE	32
	MPN	40	0.5	-35+110	TPU+POM	34
	ТИП 1					
	ТИП 2	25 40	0.5	-40+100 -35+110	TPU	36
	тип з					

ШТОКОВЫЕ УПЛОТНЕНИЯ							
Профиль	Тип	технич давл.,МПа	неские характері скорость, м/с	истики темп. °C	Материал	Стр.	
.	DP2	40	2.0	-50+100	NBR+TPE	40	
-	DP4	40	2.0	-50+100	NBR+TPE	44	
<u> </u>	DP5	40	2.0	-50+100	NBR+TPE	48	
	MPU	40			NBR+TPU		
	MPU/L	40	0.5	-35+110	NBR+TPU	50	
	MPU/2S	50			NBR+TPU+PA		
	MP	40			TPU		
	MP/L	40	0.5	-35+110	TPU	54	
	MP/LA	50			TPU+POM		
	MPS	40			TPU		
	MPS/L	40	0.5	-35+110	TPU	58	
	MPS/LA	50			TPU+POM		
	MT	40	0.5	-35+110	TPU	60	
	KAMAO	40			TPU; NBR+TPU		
	типа «КАМАЗ» н/о	40	0.5	-35+110	TPU+PA; NBR+TPU+PA	62	
	типа «КАМАЗ» с/о	40	0.5	-35+110	TPU	66	
	MZ/L	40	0.5	-35+110	TPU	68	
	MZT	40	0.5	-35+110	TPU	70	
	MPC	40	0.5	-35+110	TPU	72	
	MK/L	40	0.5	-35+110	TPU	74	

	ГРЯЗЕСЪЕМНИКИ						
Профиль	Тип	технические ха скорость, м/с	арактеристики темп. °C	Материал	Стр.		
	Z 50	2.0	-50+100	NBR+TPE	78		
	Z51	2.0	-50+100	NBR+TPE	80		
	Z 52	2.0	-50+100	NBR+PA	82		
	GW	1.0	-35+110	TPU	84		
	GWL	1.0	-35+110	TPU	86		
	GWK	1.0	-35+110	TPU	88		
	GWR	1.0	-35+110	TPU	90		
	GWS	1.0	-35+110	TPU	92		
	GWN	1.0	-35+110	TPU	94		
	ANS	1.0	-35+110	TPU	96		
	ANR	1.0	-35+110	TPU	98		
	ANT	1.0	-35+110	TPU	100		
	ANC	1.0	-35+110	TPU	102		
	ANK	1.0	-35+110	TPU	104		
	ANP	1.0	-35+110	TPU	106		
5	типа «КАМАЗ»	0.5 1.0	-40+100 -35+110	TPU	108		
	Аналог резиновых грязесъемников (РТИ)	0.5 1.0	-40+100 -35+110	TPU	110		

СТАТИЧЕСКИЕ УПЛОТНЕНИЯ								
Профиль	Тип	технические х	арактеристики	Материал	Стр.			
Профиль	''''	скорость. м/с	темп. °С	Материал	Oip.			
	GRS	-	-35+110	TPU	116			
	GSK	-	-35+110	TPU	120			
	OR	-	-35+110	TPU	122			

КОЛЬЦА ОПОРНО-НАПРАВЛЯЮЩИЕ								
Профиль	Тип		арактеристики	· Материал	Стр.			
	S24	скорость. м/с	темп. °С -60+130	РА+стекловолокно	126			
	S1	2	-60+130	РА+стекловолокно	128			
	S3	2	-60+130	РА+стекловолокно	130			
	S8	2	-60+130	РА+стекловолокно	132			
	S	2	-60+130	РА+стекловолокно	134			
	S7	2	-60+130	РА+стекловолокно	138			
	S2	2	-60+130	РА+стекловолокно	142			
	S4	2	-60+130	РА+стекловолокно	144			
	S5	2 -60+130		РА+стекловолокно	148			
	S6	2 -60+130 РА+стеклово		РА+стекловолокно	150			
	S9	2	-60+130	РА+стекловолокно	152			

КОЛЬЦА ЗАЩИТНЫЕ						
Профиль	Тип	технические скорость, м/с	характеристики темп. °С	Материал	Стр.	
	K3 (TPE)	2	-50+100	TPE	156	

	_	техн	ические характер	истики		
Профиль	Тип	давление, МПа	скорость, м/с	Материал	Стр.	
	РМ		≤1,0	-40°C +100	TPU	161
	PMK	1,2	≤1,0	-40°C +100	TPU	163
	PR	1,6	≤1,0	-35°C +110	TPU	165
	PS	1,6	≤1,0	-35°C +110	TPU	167
	PK	1,6	≤1,0	-35°C +110	TPU	169

ВВЕДЕНИЕ

Компания «Ringroup» является производителем уплотнений из полимерных и композиционных материалов с замкнутым циклом производства, который включает в себя: проектирование технологической оснастки и ее изготовление, механическая обработка рабочих кромок, сборка, контроль и проведение испытаний.

Все процессы по производству уплотнений сосредоточены внутри предприятия, что позволяет нам контролировать качество производимых изделий, а также снижать общую стоимость. Тем самым получаем хорошее соотношение цена-качество.

При производстве уплотнений мы используем высококачественное сырье ведущих производителей в мире, такое как: высококачественный термопластичный полиуретан (TPU) "Sealan"; "Desythane"; "HYTREL"; полиамид (PA) наполненный стекловолокном.

На сегодняшний день компания «Ringroup» расширяет ассортимент производимой продукции и улучшает ее технические и качественные характеристики.

Нам важно знать, что наша работа помогает Вам в продвижении Вашего бизнеса. Мы ценим наше с Вами сотрудничество и готовы сделать все, что от нас зависит, чтобы сохранить Ваше доверие!

Компания «Ringroup»

Таблица стандартов и соответствия посадочных мест

	100,111	54 0141	-7.up - 02	и соотве	1012111				
Ringroup	Guarnitec	Kastas	Hennlich	Simrit	Merkel	HYDRA PAK	POLY PAC	Sealing Parts	Busak + Shamban
CP1	TUT	K501	K714						
CP2		K15	K764		OMK-PU				
CP3	TTQ								
CP5; CP5M	TTO	K15	K764		OMK-PU	KPD			ZURCON WYNSEAL
CP6	TTR	K49		SIMKO 300					
CP8	PDH	K19	K735						
MPI	TPL; TPM	K18	K780		L43	KGD	DBM	DAS	DBM
MPN	TTW	K40	K252		T18				
DP2	GIP	K35	S716						
DP4	GIP	K35	S716						
DP5	GIP	K35	S716		OMS-MR				
MPU		K98							
MPU/2S		K31	S621	KI320					
MP	TTI	K22	S263	NI300	T20		EU	RS	RU0
MP/L	TTI/L	K33	S605	T22	T22		EU/S	RS/L	RU3
MP/LA	TTI/LA	K32	S662	T23	T23/TM23				
Z50									
Z52									
GW	GHK	K06	A831		PU6	SAF	WRM; WRM/P	PW	WRM
GWR	GHP	K09	A834		ASOB	SAG		PW/F	ASW
ANS				AUASOB			WR/M		
GRS	GDS	K85	SSA						
GSK		K84							
GWS	GHY	K05	A860	AUPS	PU5		SWP		SWP
GRM	GKM	K81							
S	AGI	K68							
S1	AGE	K68							
S2		K69							
S 3	AGE	K68				FE	E/DWR	WRE	GP
S4	AGI	K69			SF	FI	I/DWR	WRI	GR
S7		K73			FRI; FRA	FR		WR	GR
S24									
PR		K53	PD	AUDIP/ DIP	DIP		AICM		AICM
PM		K50	PK1	NAP 300/ NAPN	NAP 300/ NAPN		APDE/ APDS		APDE/ APDS
PS		K51	PA2	AUNIPSL	AU NIPSL		ARAA/ ARAN		ARAA/ ARAN
PK		K64	PA1	NIPSL300			AWSD		AWSD
PMK		K59		NAP310			APDG		APDG

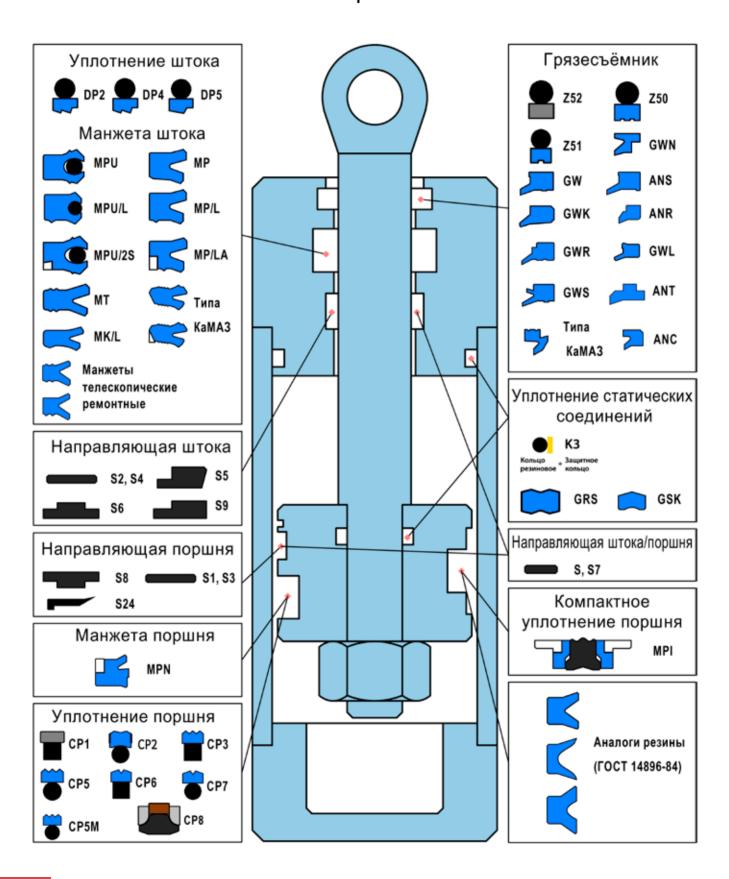


Таблица стандартов и соответствия посадочных мест

		ца стап,	3wp 102	T COULT	0101211	 ,	1,1001	
Ringroup	GAPI	Parker	Элконт	РΓ				
CP1			E11	P1				
CP2	PSQ	KR						
CP3			E13M	P2				
CP5 CP5M	PSO		E15M					
CP6	PSQ		P6					
CP8								
MPI	KDSB	ZW						
MPN	PAE							
DP2			E02					
DP4			E06					
DP5								
MPU			E30	UR				
MPU/2S			E32	UR/P-M				
MP	RSA							
MP/L	RSB							
MP/LA	RSB2							
Z50			E50	W50				
Z52			E52	W52				
GW	WSL	A1						
GWR	WWS							
ANS								
GRS		,						
GSK								
GWS								
GRM				G6				
S			E20	G4				
S1			E21	G1				
S2			E22	G2		 		
S 3								
S4	HIS							
S7								
S24			E24	G24				
PR	CSA							
PM	PSP							
PS								
PK	BWS	EM/EL						
PMK								

Комбинированные опорно-уплотнительные элементы из полимерных и композиционных материалов

ПОРШНЕВЫЕ УПЛОТНЕНИЯ технические характеристики Профиль Тип Материал Стр. давл., МПа темп. °С скорость, м/с CP1 40 2.0 -50...+100 NBR+PA 12 CP2 25 0.5 -35...+110 **NBR+TPU** 14 30 0.5 -50...+100 **NBR+TPE** CP3 16 40 -50...+100 2.0 **NBR+TPE** -50...+100 30 0.5 **NBR+TPE** CP5 18 40 2.0 -50...+100 **NBR+TPE** 30 0.5 **NBR+TPE** CP5M -50...+100 20 40 2.0 **NBR+TPE** 30 0.5 **NBR+TPE** CP6 -50...+100 22 40 2.0 **NBR+TPE** 30 0.5 **NBR+TPE** CP6M -50...+100 24 40 0.5 **NBR+TPE** 30 0.5 **NBR+TPE** CP7 -50...+100 26 40 2.0 **NBR+TPE** NBR+PA+F4K20 CP8 50 -50...+100 1.5 28 NBR+PA+PTFE CP9 20 0.5 -35...+110 **TPU** 30 MPI 40 -50...+100 32 0.5 NBR+PA+TPE **MPN** 40 0.5 -35...+110 **TPU+POM** 34 **ТИП 1** -40...+100 25 0.5 **TPU ТИП 2** 36 40 -35...+110 **ТИП 3**

Описание

CP1 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

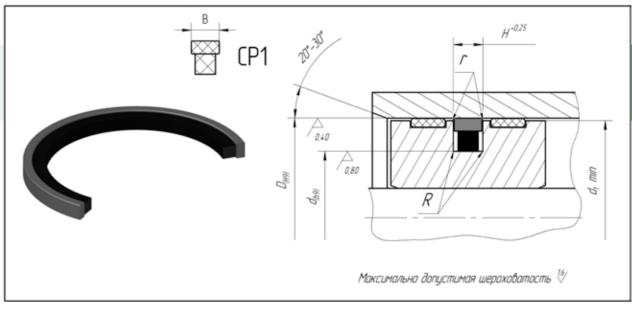
разрезного уплотнительного кольца прямоугольного сечения со ступенчатым замком и поджимного резинового кольца квадратного сечения R. Рекомендуется установка не менее двух уплотнений в один уплотняемый узел при диаметрально противоположном расположении замков.

Свойства

- компактность
- простейший монтаж
- простая конструкция канавки
- допускает большие зазоры
- высокая износостойкость уплотнительного кольца

Материалы

Уплотнительное кольцо - полиамид (PA) +стекловолокно


Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- При больших зазорах в соеднении поршень-гильза
- При большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины

Технические данные

- температура
- -50°С... +100°С (Поджимное кольцо -резина 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиамид (РА) + стекловолокно)
- скорость скольжения до 2 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам							
D	d ≤ 65mm	d > 65mm					
K	max 0.40 mm max 0.80 mm						
r	удаление острых кромок: r ≤ 0.3 mm						

Код	Код Евро	Обозначение	D	d	d1	Н	В	Кольцо поджимное квадратного сечения	Цена РА
А101сб	A101c	CP1-080	80	66,5	78,5	6,3	6,0	R-080 (63.0x4.7)	
А102сб	A102c	CP1-100	100	86,5	98,5	6,3	6,0	R-100 (83.0x4.7)	
А103сб	A103c	CP1-110	110	96,5	108,5	6,3	6,0	R-110 (93.0x4.7)	
А104сб	A104c	CP1-125	125	111,5	123,5	6,3	6,0	R-125 (108.0x4.7)	
А105сб	A105c	CP1-140	140	122,0	138,5	8,1	7,8	R-140 (118.0x6.1)	
А106сб	A106c	CP1-160	160	142,0	158,5	8,1	7,8	R-160 (137.0x6.1)	
								· · · · · · · · · · · · · · · · · · ·	

Описание

СР2 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля с двумя уплотнительными кромками и поджимного кольца круглого сечения R.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- простая конструкция канавки, возможность использования в неразъемном поршне
- высокая износоустойчивость

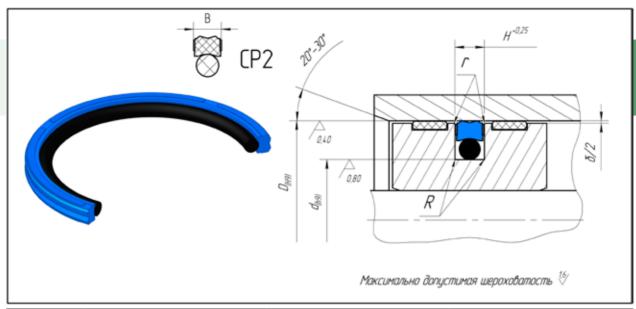
Материалы

Уплотнительное кольцо

Основное уплотнение полиуретан (TPU) "SEALAN" 93A;

Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение


- сельскохозяйственная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

- температура -35°С... +110°С
- скорость скольжения до 0,5 м/с.
- рабочее давление до 25 МПа
- среда минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам						
D	d ≤ 6	5mm	d > 65mm			
R	max 0.	max 0.80 mm				
r	удаление острых кромок: r ≤ 0.3 mm					
		δmax				
B, mm	4.2 6.3 8.1					
δmax, mm	0.5 0.6 0.6					

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное круглого Цена сечения TPU
Б112	B112	CP2-032	32	21,0	4,2	4,0	R1M-032 (18.5x3.6)
Б113	B113	CP2-040	40	29,0	4,2	4,0	R1M-040 (27.5x3.6)
Б101	B101	CP2-050	50	39,0	4,2	4,0	R1M-050 (37.0x3.6)
Б102	B102	CP2-055	55	44,0	4,2	4,0	R1M-055 (43.0x3.6)
Б114	B114	CP2-060	60	49	4,2	4,0	R1M-048 (48.0x36)
Б103	B103	CP2-063	63	52,0	4,2	4,0	R1M-063 (51.0x3.6)
Б104	B104	CP2-070	70	59,0	4,2	4,0	R1M-070 (58.0x3.6)
Б115	B115	CP2-075	75	59,5	6,3	6,0	R1M-075 (58.0x5.3)
Б105	B105	CP2-080	80	64,5	6,3	6,0	R1M-080 (59.7x5.3)
Б106	B106	CP2-090	90	74,5	6,3	6,0	R1M-090 (72.4x5.3)
Б107	B107	CP2-100	100	84,5	6,3	6,0	R1M-100 (81.9x5.3)
Б108	B108	CP2-110	110	94,5	6,3	6,0	R1M-110 (91.5x5.3)
Б109	B109	CP2-125	125	109,5	6,3	6,0	R1M-125 (104.1x5.3)
Б110	B110	CP2-140	140	119,0	8,1	7,8	R1M-140 (116.0x7.0)
Б111	B111	CP2-160	160	139,0	8,1	7,8	R1M-160 (135.9x7.0)

Описание

СР3 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля с тремя уплотнительными кромками и поджимного кольца квадратного сечения

Свойства

- компактность
- стойкость к перекручиванию поджимного кольца, равномерность уплотнения за счет применения резинового кольца квадратного сечения
- высокий статический и динамический уплотняющий эффект
- простая конструкция канавки, возможность использования в неразъемном поршне
- допускает большие зазоры
- высокая износоустойчивость

<u>Материалы</u>

Уплотнительное кольцо

Исполнение 1 - полиэфир (TPE) "HYTREL" 47D; Исполнение 2 - полиэфир (TPE) "HYTREL" 72D; Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

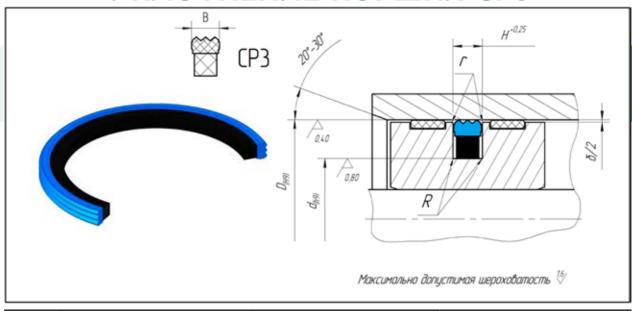
Технические данные

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)

- скорость скольжения
- Исполнение 1 до 0,5 м/с;


Исполнение 2 - до 2,0 м/с;

• рабочее давление

Исполнение 1 - до 30 МПа (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 - до 40 МПа (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• среда - минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам							
R	d ≤ 6	d > 65mm					
K	max 0.	max 0.80 mm					
r	удаление острых кромок: r ≤ 0.3 mm						
	δmax, mm						
L, mm	10 МПа	20 МПа	40 МПа				
4.2	0,6	0,3					
6.3	0,7	0,4					
8.1	0,8	0,5					

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное квадратного сечения	Цена ТРЕ
В113сб	V113c	CP3-040	40	29,5	4,2	4,0	R-040 (27.0x3.1)	
В101сб	V101c	CP3-050	50	39,5	4,2	4,0	R-050 (37.0x3.1)	
В102сб	V102c	CP3-055	55	43,5	4,2	4,0	R-055 (42.0x3.1)	
В103сб	V103c	CP3-063	63	52,5	4,2	4,0	R-063 (50.0x3.1)	-
В104сб	V104c	CP3-070	70	59,5	4,2	4,0	R-070 (57.0x3.1)	
В105сб	V105c	CP3-080	80	65,7	6,3	6,0	R-080 (63.0x4.7)	
В106сб	V106c	CP3-090	90	75,7	6,3	6,0	R-090 (73.0x4.7)	
В107сб	V107c	CP3-100	100	85,7	6,3	6,0	R-100 (83.0x4.7)	-
В108сб	V108c	CP3-110	110	95,7	6,3	6,0	R-110 (93.0x4.7)	
В109сб	V109c	CP3-125	125	110,7	6,3	6,0	R-125 (108.0x4.7)	
В110сб	V110c	CP3-140	140	121,1	8,1	7,8	R-140 (118.0x6.1)	
В111сб	V111c	CP3-160	160	141,1	8,1	7,8	R-160 (137.0x6.1)	
								-

Описание

СР5 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля с тремя уплотнительными кромками и поджимного кольца круглого сечения R.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- простая конструкция канавки, возможность использования в неразъемном поршне
- допускает большие зазоры
- высокая износоустойчивость

<u>Материалы</u>

Уплотнительное кольцо

Исполнение 1 - полиэфир (TPE) "HYTREL" 47D; Исполнение 2 - полиэфир (TPE) "HYTREL" 72D; Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

• температура

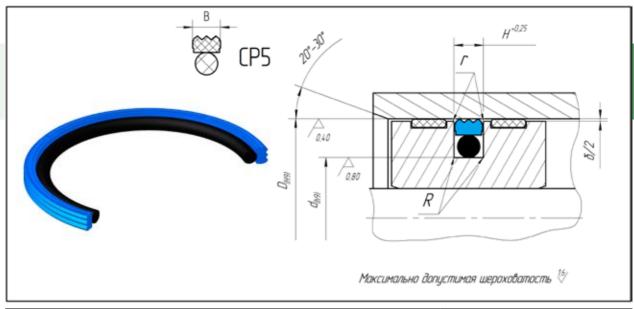
 -50° С... $+100^{\circ}$ С (Поджимное кольцо - резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• скорость скольжения

Исполнение 1 - до 0,5 м/с;


Исполнение 2 - до 2,0 м/с;

• рабочее давление

Исполнение 1 - до 30 МПа (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 - до 40 МПа (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• среда - минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам							
R	d ≤ 6	55mm	d > 65mm				
K	max 0.	max 0.80 mm					
r	удаление острых кромок: r ≤ 0.3 mm						
	δmax, mm						
L, mm	10 МПа	20 МПа	40 МПа				
4.2	0,6	0,6 0,5					
6.3	0,7	0,4					
8.1	0,8	0,7	0,5				

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное круглого сечения	Цена TPE
Д114сб	D114c	CP5-032	32	21,0	4,2	4,0	R1M-032 (18.5x3.6)	
Д101сб	D101c	CP5-040	40	29,0	4,2	4,0	R1M-040 (27.5x3.6)	
Д102сб	D102c	CP5-050	50	39,0	4,2	4,0	R1M-050 (37.0x3.6)	
Д103сб	D103c	CP5-055	55	44,0	4,2	4,0	R1M-055 (43.0x3.6)	
Д104сб	D104c	CP5-063	63	52,0	4,2	4,0	R1M-063 (51.0x3.6)	
Д113сб	D113c	CP5-070	70	59,0	4,2	4,0	R1M-070 (58,0x3.6)	
Д105сб	D105c	CP5-075	75	59,5	6,3	6,0	R1M-075 (58.0x5.3)	
Д106сб	D106c	CP5-080	80	64,5	6,3	6,0	R1M-080 (59.7x5.3)	
Д107сб	D107c	CP5-090	90	74,5	6,3	6,0	R1M-090 (72.4x5.3)	
Д108сб	D108c	CP5-100	100	84,5	6,3	6,0	R1M-100 (81.9x5.3)	
Д109сб	D109c	CP5-110	110	94,5	6,3	6,0	R1M-110 (91.5x5.3)	
Д110сб	D110c	CP5-125	125	109,5	6,3	6,0	R1M-125 (104.1x5.3)	
Д111сб	D111c	CP5-140	140	119,0	8,1	7,8	R1M-140 (116.0x7.0)	
Д112сб	D112c	CP5-160	160	139,0	8,1	7,8	R1M-160 (135.9x7.0)	

Описание

CP5M - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля с тремя уплотнительными кромками и поджимного кольца круглого сечения R.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- простая конструкция канавки, возможность использования в неразъемном поршне
- допускает большие зазоры
- высокая износоустойчивость

<u>Материалы</u>

Уплотнительное кольцо

Исполнение 1 - полиэфир (TPE) "HYTREL" 47D; Исполнение 2 - полиэфир (TPE) "HYTREL" 72D; Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

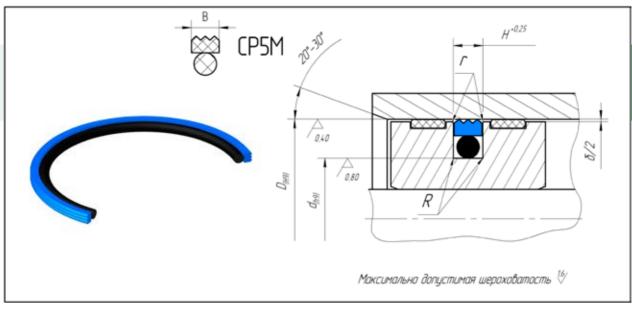
- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 -50°С... +100°С (Уплотнительное кольцо из полиэфир "HYTREL" 72D)

• скорость скольжения

Исполнение 1 - до 0,5 м/с;


Исполнение 2 - до 2,0 м/с;

• рабочее давление

Исполнение 1 - до 30 МПа (Уплотнительное кольцо из - полиэфира"HYTREL" 47D)

Исполнение 2 - до 40 МПа (Уплотнительное кольцо - полиэфир "HYTREL" 72D)

• среда - минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам						
R	d ≤ 6	5mm	d > 65mm			
K	max 0.	40 mm	max 0.80 mm			
r	удаление острых кромок: r ≤ 0.3 mm					
	δmax, mm					
L, mm	10 МПа	20 МПа	40 МПа			
4.2	0,6	0,6 0,5				
6.3	0,7	0,4				
8.1	0,8 0,7 0,5					

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное круглого сечения	Цена ТРЕ
И106сб	Y106c	CP5M-050	50	42,5	3,2	3,0	R1M-050 (40.0x2.5)	
И107сб	Y107c	CP5M-063	63	55,5	3,2	3,0	R1M-063 (54.0x2.5)	
И101сб	Y101c	CP5M-080	80	69	4,2	4,0	R1M-080 (63.5x3.6)	
И102сб	Y102c	CP5M-090	90	79	4,2	4,0	R1M-090 (77.5x3.6)	
И103сб	Y103c	CP5M-100	100	89	4,2	4,0	R1M-100 (87.5x3.6)	
И104сб	Y104c	CP5M-110	110	99	4,2	4,0	R1M-110 (98.0x3.6)	
И105сб	Y105c	CP5M-125	125	114	4,2	4,0	R1M-125 (113.0x3.6)	
И108сб	Y108c	CP5M-140	140	124.5	6.3	6.0	R1M-140 (123.2x5.3)	
И109сб	Y109c	CP5M-160	160	144.5	6.3	6.0	R1M-160 (145.4x5.3)	

Описание

СР6 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля двумя уплотнительными кромками и поджимного кольца квадратного сечения R.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- стойкость к перекручиванию поджимного кольца, равномерность уплотнения за счет применения резинового кольца квадратного сечения
- простая конструкция канавки, возможность использования в неразъемном поршне
- допускает большие зазоры
- высокая износоустойчивость

<u>Материалы</u>

Уплотнительное кольцо

Исполнение 1 - полиэфир (TPE) "HYTREL" 47D; Исполнение 2 - полиэфир (TPE) "HYTREL" 72D; Поджимное кольцо - резина масло-бензостойкая 7В-14-1

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

• температура

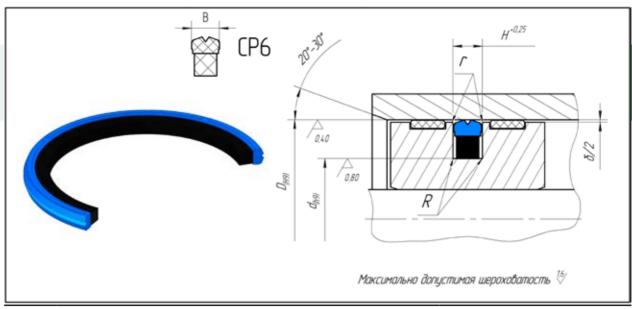
-50°С... +100°С (Поджимное кольцо - резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D) Исполнение 2 -50°С... +100°С (Уплотнительное

кольцо полиэфир "HYTREL" 72D)

• скорость скольжения

Исполнение 1 - до 0,5 м/с;


Исполнение 2 - до 2,0 м/с;

• рабочее давление

Исполнение 1 - до 30 МПа (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 - до 40 МПа (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• среда - минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам							
R	d ≤ 6	5mm	d > 65mm				
K	max 0.	max 0.80 mm					
r	удаление острых кромок: r ≤ 0.3 mm						
	δmax, mm						
B, mm	10 МПа	20 МПа	40 МПа				
4.2	0,6 0,5 0,3						
6.3	0,7 0,6 0,4						
8.1	0,8 0,7 0,5						

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное квадратного сечения	Цена ТРЕ
Е101сб	E101c	CP6"47D"-050	50	39,5	4,2	4,0	R-050 (37.0x3.1)	
Е114сб	E114c	CP6"72D"-050	50	39,5	4,2	4,0	R-050 (37.0x3.1)	
Е103сб	E103c	CP6"47D"-060	60	49,5	4,2	4,0	R-060 (47.0x3.1)	
Е116сб	E116c	CP6"72D"-060	60	49,5	4,2	4,0	R-060 (47.0x3.1)	
Е104сб	E104c	CP6"47D"-063	63	52,5	4,2	4,0	R-063 (50.0x3.1)	
Е117сб	E117c	CP6"72D"-063	63	52,5	4,2	4,0	R-063 (50.0x3.1)	
Е105сб	E105c	CP6"47D"-070	70	59,5	4,2	4,0	R-070 (57.0x3.1)	
Е118сб	E118c	CP6"72D"-070	70	59,5	4,2	4,0	R-070 (57.0x3.1)	
Е106сб	E106c	CP6"47D"-080	80	65,7	6,3	6,0	R-080 (63.0x4.7)	
Е119сб	E119c	CP6"72D"-080	80	65,7	6,3	6,0	R-080 (63.0x4.7)	
Е107сб	E107c	CP6"47D"-090	90	75,7	6,3	6,0	R-090 (73.0x4.7)	
Е120сб	E120c	CP6"72D"-090	90	75,7	6,3	6,0	R-090 (73.0x4.7)	
Е108сб	E108c	CP6"47D"-100	100	85,7	6,3	6,0	R-100 (83.0x4.7)	
Е121сб	E121c	CP6"72D"-100	100	85,7	6,3	6,0	R-100 (83.0x4.7)	
Е109сб	E109c	CP6"47D"-110	110	95,7	6,3	6,0	R-110 (93.0x4.7)	
Е122сб	E122c	CP6"72D"-110	110	95,7	6,3	6,0	R-110 (93.0x4.7)	
Е111сб	E111c	CP6"47D"-125	125	110,7	6,3	6,0	R-125 (108.0x4.7)	
Е124сб	E124c	CP6"72D"-125	125	110,7	6,3	6,0	R-125 (108.0x4.7)	
Е112сб	E112c	CP6"47D"-140	140	121,1	8,1	7,8	R-140 (118.0x6.1)	
Е125сб	E125c	CP6"72D"-140	140	121,1	8,1	7,8	R-140 (118.0x6.1)	
Е113сб	E113c	CP6"47D"-160	160	141,1	8,1	7,8	R-160 (137.0x6.1)	
Е126сб	E126c	CP6"72D"-160	160	141,1	8,1	7,8	R-160 (137.0x6.1)	

Описание

СР6М – уплотнение поршня двухстороннего действия, состоящее из двух частей: неразъёмного уплотнительного кольца специального профиля с двумя уплотнительными кромками и поджимного кольца прямоугольного сечения.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- стойкость к перекручиванию поджимного кольца, равномерность уплотнения за счет применения резинового кольца прямоугольного сечения
- простая конструкция канавки, возможность использования в неразъёмном поршне
- допускает большие зазоры
- высокая износоустойчивость

Материалы

Исполнение 1 – полиэфир (TPE) "HYTREL" 47D; Исполнение 2 – полиэфир (TPE) "HYTREL" 60D;

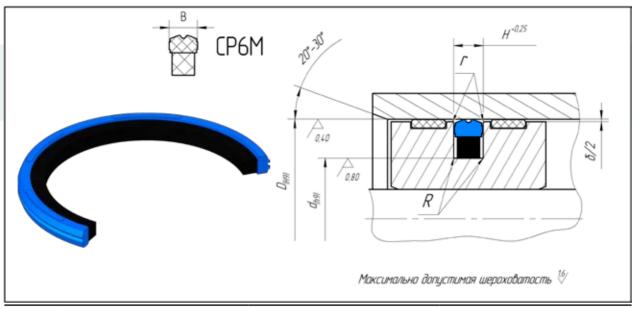
Применение

- при большой цикличности
- сельскохозяйственная техника
- строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы
- стандартные цилиндры

Технические данные

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D)


Исполнение 2 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 60D)

- скорость скольжения до 0,5 м/с;
- рабочее давление

Исполнение 1 - \leq 30 МПа (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 - \leq 40 МПа (Уплотнительное кольцо полиэфир "HYTREL" 60D)

• среда - минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам							
R	d ≤ 6	55mm	d > 65mm				
K	max 0.	max 0.80 mm					
r	удаление острых кромок: r ≤ 0.3 mm						
	δmax, mm						
B, mm	15 МПа	25 МПа	40 МПа				
4.2	0,6	0,6 0,5					
6.3	0,7	0,7 0,6					
8.1	0,8	0,5					

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное прямоугольного сечения	Цена ТРЕ
Ж200сб	J200c	CP6M-050	50	39	4.2	4.0	37,5-3,1-3,35	
Ж201сб	J201c	CP6M-060	60	44.5	6.3	6.0	42,0-4,7-5,3	
Ж202сб	J202c	CP6M-070	70	54.5	6.3	6.0	52,0-4,7-5,3	
Ж203сб	J203c	CP6M-075	75	59.5	6.3	6.0	57,0-4,7-5,3	
Ж204сб	J204c	CP6M-080	80	64.5	6.3	6.0	62,0-4,7-5,3	
Ж205сб	J205c	CP6M-090	90	74.5	6.3	6.0	72,0-4,7-5,3	
Ж206сб	J206c	CP6M-100	100	79	8.1	7.6	77,8-7,5-7,0	
Ж207сб	J207c	CP6M-110	110	89	8.1	7.6	87,8-7,5-7,0	
Ж208сб	J208c	CP6M-120	120	99	8.1	7.6	97,3-7,5-7,0	

Описание

СР7 - уплотнение поршня двухстороннего действия, состоящее из двух частей:

неразъемного уплотнительного кольца специального профиля двумя уплотнительными кромками и поджимного кольца круглого сечения R.

Свойства

- компактность
- высокий статический и динамический уплотняющий эффект
- простая конструкция канавки, возможность использования в неразъемном поршне
- допускает большие зазоры
- высокая износоустойчивость

<u>Материалы</u>

Уплотнительное кольцо

Исполнение 1 - полиэфир (TPE) "HYTREL" 47D; Исполнение 2 - полиэфир (TPE) "HYTREL" 72D; Поджимное кольцо - резина масло-бензостойкая 7В-14-1

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

- температура
- -50°С... +100°С (Поджимное кольцо резина 7B-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• скорость скольжения

Исполнение 1 - до 0,5 м/с;


Исполнение 2 - до 2,0 м/с;

• рабочее давление

Исполнение 1 - до 30 МПа (Уплотнительное кольцо полиэфир "HYTREL" 47D)

Исполнение 2 - до 40 МПа (Уплотнительное кольцо полиэфир "HYTREL" 72D)

• среда - минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам								
R	d ≤ 6	d > 65mm							
Κ	max 0.	max 0.80 mm							
r	удаление острых кромок: r ≤ 0.3 mm								
	δmax, mm								
L, mm	10 МПа	20 МПа	40 МПа						
4.2	0,6	0,5	0,3						
6.3	0,7	0,6	0,4						
8.1	0,8	0,7	0,5						

Код	Код Евро	Обозначение	D	d	Н	В	Кольцо поджимное круглого сечения	Цена ТРЕ
Ж101сб	J101c	CP7"47D"-050	50	39,0	4,2	4,0	R1M-050 (37.0x3.6)	
Ж114сб	J114c	CP7"72D"-050	50	39,0	4,2	4,0	R1M-050 (37.0x3.6)	
Ж103сб	J103c	CP7"47D"-060	60	49,0	4,2	4,0	R1M-060 (48.0x3.6)	
Ж116сб	J116c	CP7"72D"-060	60	49,0	4,2	4,0	R1M-060 (48.0x3.6)	
Ж104сб	J104c	CP7"47D"-063	63	52,0	4,2	4,0	R1M-063 (51.0x3.6)	
Ж117сб	J117c	CP7"72D"-063	63	52,0	4,2	4,0	R1M-063 (51.0x3.6)	
Ж105сб	J105c	CP7"47D"-070	70	59,0	4,2	4,0	R1M-070 (58.0x3.6)	
Ж118сб	J118c	CP7"72D"-070	70	59,0	4,2	4,0	R1M-070 (58.0x3.6)	
Ж107сб	J107c	CP7"47D"-080	80	64,5	6,3	6,0	R1M-080 (59.7x5.3)	
Ж120сб	J120c	CP7"72D"-080	80	64,5	6,3	6,0	R1M-080 (59.7x5.3)	
Ж108сб	J108c	CP7"47D"-090	90	74,5	6,3	6,0	R1M-090 (72.4x5.3)	
Ж121сб	J121c	CP7"72D"-090	90	74,5	6,3	6,0	R1M-090 (72.4x5.3)	
Ж109сб	J109c	CP7"47D"-100	100	84,5	6,3	6,0	R1M-100 (81.9x5.3)	
Ж122сб	J122c	CP7"72D"-100	100	84,5	6,3	6,0	R1M-100 (81.9x5.3)	
Ж110сб	J110c	CP7"47D"-110	110	94,5	6,3	6,0	R1M-110 (91.5x5.3)	
Ж123сб	J123c	CP7"72D"-110	110	94,5	6,3	6,0	R1M-110 (91.5x5.3)	
Ж111сб	J111c	CP7"47D"-125	125	109,5	6,3	6,0	R1M-125 (104.0x5.3)	
Ж124сб	J124c	CP7"72D"-125	125	109,5	6,3	6,0	R1M-125 (104.0x5.3)	
Ж112сб	J112c	CP7"47D"-140	140	119,0	8,1	7,8	R1M-140 (116.0x7.0)	
Ж125сб	J125c	CP7"72D"-140	140	119,0	8,1	7,8	R1M-140 (116.0x7.0)	
Ж113сб	J113c	CP7"47D"-160	160	139,0	8,1	7,8	R1M-160 (135.9x7.0)	
Ж126сб	J126c	CP7"72D"-160	160	139,0	8,1	7,8	R1M-160 (135.9x7.0)	

Описание

СР8 - компактное уплотнение двустороннего действия для тяжелых режимов эксплуатации, состоящее из четырех частей: одного профильного кольца из бронзонаполненного фторопласта РТFE, одного поджимного уплотнительного элемента из масло-бензостойкой резины и двух опорных колец из термопластичного материала.

Свойства

- высокая скорость скольжения
- простая конструкция канавки
- низкий коэффициент трения, скольжение без рывков
- длительный срок службы
- высокий статический и динамический уплотняющий эффект
- высокое сопротивление абразивному износу
- возможен увеличенный зазор

Материалы

Центральный уплотнительный элемент из фторопласта с:

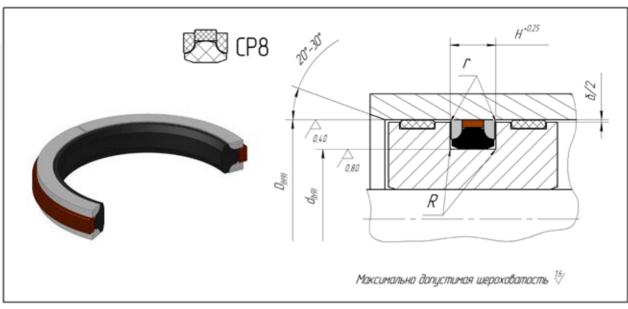
Исполнение 1 - наполнением коксом 20% F4K20, Исполнение 2 - наполнением бронзой (РТFE + бронза);

профильного поджимного кольца из каучука; 2 разрезных защитных кольца (разрез косой) из полиамида PA.

Применение

- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с средним и тяжелыми режимами работы

Примечания


Для применения в специальных условиях, требующих высоких температур, высокой скорости хода. Благодаря своей конструкции, СР8 может использоваться при ударном давлении, достигающем 50МПа. Допустимые значения уплотнительного зазора уплотнения поршня для тяжелых режимов эксплуатации СР8 поданы в таблице.

Технические данные

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)

Исполнение 1 -50°С... +100°С (Уплотнительное кольцо с наполнением коксом 20% F4K20) Исполнение 2 -50°С... +100°С (Уплотнительное кольцо с наполнением бронзой 40% (РТFЕ +бронза))

- скорость скольжения до 1,5 м/с
- рабочее давление до 50 МПа
- среда минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам									
		$d \le 100$ mm		d > 100mm					
R		max 0.30 mm			max 0.	60 mm			
r		удаление ос	трых кро	мок: r ≤ 0.3	mm				
δ	Рабоч	ее давление ≤ 35 МПа 1,00 mm	Pa	бочее давле	ние от 35 1	MПа до 50 MI	Ta 0,60 mm		
	Vол.								
Код	Код Евро	Обозначение	D	d	Н	Цена F4K20	Цена PTFE		
К101сб	K101c	CP8-080	80	65	11,0				
К102сб	K102c	CP8-100	100	85	12,5				

Описание

СР9 - поршневое уплотнение двухстороннего действия.

Конструкция уплотнения, его геометрия, а также используемый материал позволили упростить конструкцию посадочных канавок, а также уменьшить трение и износ уплотнения, тем самым, продлив срок его службы.

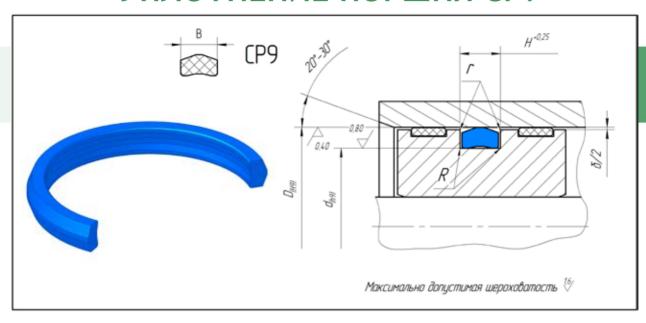
Свойства

- простая конструкция канавки
- низкий коэффициент трения, скольжение без рывков
- длительный срок службы
- высокий статический и динамический уплотняющий эффект
- высокое сопротивление абразивному износу

<u>Материалы</u>

Полиуретан(TPU) "SEALAN" 93A

Применение


- при большой цикличности
- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование с легким и средним режимами работы

Примечания

Рекомендуется использовать с двумя направляющими кольцами на поршне в цилиндрах с длинным ходом и с одним направляющим кольцом в цилиндрах с коротким ходом и при низких радиальных нагрузках.

Технические данные

- температура -35°С... +110°С
- скорость скольжения до 0,5 м/с.
- рабочее давление до 20 МПа
- среда минеральные масла и водно-масляные эмульсии

		Рекомендации по до	опускам и р	размерам						
R		$d \leq 100 mm$		d > 100mm						
	max 0.30 mm				max 0.60 n	nm				
r		удаление остр	ых кромон	c: r ≤ 0.3 mn	n					
δ	Рабоче	е давление ≤ 16 МПа 1,00 mm		Рабочее дан	зление до 2	5 МПа 0,60) mm			
Код	Код Евро	Обозначение	D	d	L	В	Цена TPU			
Л101	L101	CP9-075	75	66,5	10,2	10,0				
Л102	L102	CP9-080	80	71,5	10,2	10,0				
Л103	L103	CP9-090	90	81,5	10,2	10,0				
Л104	L104	CP9-100	100	91,5	10,2	10,0				
Л105	L105	CP9-110	110	101,5	10,2	10,0				
Л106	L106	CP9-125	125	115	11,0	10,0				

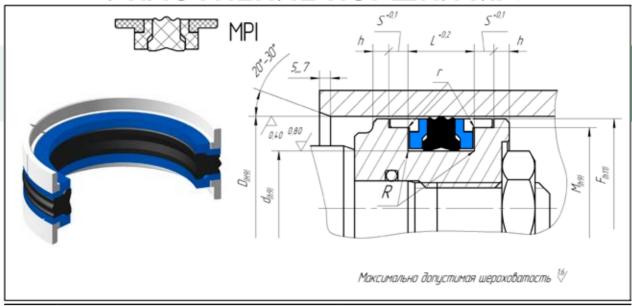
Описание

МРІ – компактное уплотнение двустороннего действия, состоящее из пяти частей: центральный многокромочный уплотнительный элемент из маслобензостойкой резины, двух защитных колец, для предотвращения экструзии в уплотнительный зазор, и двух специальных профильных направляющих колец, изготовленных из термопластичного материала, для амортизации поперечной силы.

Свойства

- простая конструкция канавки, возможно сть использования в неразъемном поршне
- высокий статический и динамический уплотняющий эффект
- большая стойкость к повышенному давлению
- длительный срок службы

Материалы


Центральный уплотнительный элемент - маслобензостойкая резина 7В-14-1 Кольца защитные - полиэфир (ТРЕ) Направляющие кольца - полиамид (РА)

<u>Применение</u>

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- в гидроцилиндрах с высокими требованиями герметичности

Технические данные

- температура -50°C +100°C
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам										
- D		d ≤ 100mm			d > 100mm						
R		max 0.40 mm			max 0.80 mm						
r				0.2	mm						
Код	Код Евро	Обозначение	D	d	L	S	h	М	F	Цена	
A225	A225	MPI 251613	25	16	13,5	2,10	5	22,00	24,00		
A226	A226	MPI 322215	32	22	15,5	2,60	5	28,00	31,00		
A218	A218	MPI 322410	32	24	10,0	4,00	5	29,00	31,00		
A227	A227	MPI 403016	40	30	16,4	6,35	5	35,40	38,50		
A201	A201	MPI 403210	40	32	10,0	4,00	5	37,00	39,00		
A230	A230	MPI 503418	50	34	18,4	6,35	5	45,41	48,70		
A202	A202	MPI 503420	50	34	20,5	3,10	6	46,00	49,00		
A222	A222	MPI 604418	60	44	18,4	6,35	5	55,39	58,65		
A219	A219	MPI 604420	60	44	20,5	3,10	6	56,00	59,00		
A203	A203	MPI 634718	63	47	18,4	6,35	5	58,39	61,63		
A204	A204	MPI 634720	63	47	20,5	3,10	6	59,00	62,00		
A223	A223	MPI 705022	70	50	22,4	6,35	6	64,18	68,34		
A220	A220	MPI 705420	70	54	20,5	3,10	6	66,00	69,00		
A205	A205	MPI 755920	75	59	20,5	3,10	6	71,00	74,00	,	
A206	A206	MPI 806022	80	60	22,4	6,35	6	74,16	78,34		
A217	A217	MPI 806222	80	62	22,5	3,60	8	76,00	79,00	7	
A224	A224	MPI 907022	90	70	22,4	6,35	6	84,15	88,31		
A221	A221	MPI 907222	90	72	22,5	3,60	8	86,00	89,00	,	
A207	A207	MPI 1007522	100	75	22,4	6,35	6	93,14	98,05		
A208	A208	MPI 1008222	100	82	22,5	3,60	8	96,00	99,00		
A209	A209	MPI 1108522	110	85	22,4	6,35	6	103,10	108,00		
A210	A210	MPI 1109622	110	96	22,5	5,20	8	106,00	109,40		
A228	A228	MPI 1159722	115	97	22,5	3.60	8	111,00	114,00		
A211	A211	MPI 12510025	125	100	25,4	6,35	6	118,08	122,96		
A212	A212	MPI 14011525	140	115	25,4	9,52	6	132,60	137,50		
A200	A200	MPI 16013025	160	130	25,4	9,50	7	152,60	157,50		
A214	A214	MPI 16013826	160	138	26,5	5,10	8	156,00	159,00		
A215	A215	MPI 18015525	180	155	25,4	12,70	8	171,72	177,10		
A216	A216	MPI 20017525	200	175	25,4	12,70	8	191,62	197,00		
A229	A229	MPI 22019525	220	195	25,4	12,70	8	211,62	217,00		

Описание

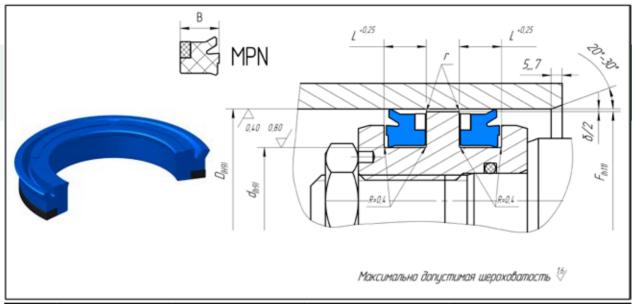
MPN - уплотнение поршня одностороннего действия, состоящее из двух частей: ассиметричного профиля с канавками, уменьшающими давление, и опорного кольца из термопластичного материала.

Свойства

- простая конструкция канавки, возможно сть использования в неразъемном поршне
- высокий статический и динамический уплотняющий эффект
- большая стойкость к повышенному давлению, разгрузочные канавки компенсируют динамическое лавление
- длительный срок службы
- простой монтаж

<u>Материалы</u>

Манжета воротникового типа - полиуретан (TPU) "SEALAN" 93A

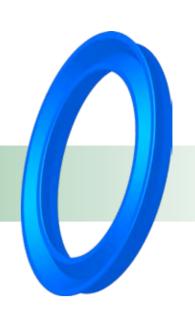

Кольцо противовыдавливания - полиацеталь (РОМ)

Применение

- сверхмощные цилиндры
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- в гидроцилиндрах с высокими требованиями герметичности

Технические данные

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии


	Рекомендации по допускам и размерам									
r	удаление острых кромок r ≤0.3 mm									
	Рабочее давление при максимально допустимом зазоре									
	размер профиля	> 16 MPa	> 26 MPa	> 32 MPa	> 40 MPa					
δ	7.5	0.8 mm	0.7 mm	0.5 mm	0.5 mm					
	> 7.5	1.05 mm	0.9 mm	0.85 mm	0.8 mm					

Код	Код Евро	Обозначение	D	d	d1	L	В, мм	Кольцо противовыдавливания квадратного сечения	Цена TPU
B202	V202	MPN-80-60-12.5/13.0	80	60	74	12,5/13,0	12,2	КПВ-080	
B204	V204	MPN-100-80-12.5/13.0	100	80	94	12,5/13,0	12,2	КПВ-100	
B205	V205	MPN-110-90-12.5/13.0	110	90	104	12,5/13,0	12,2	КПВ-110	
B206	V206	MPN-125-105-12.5	125	105	119	12,5	12,2	КПВ-125	
B207	V207	MPN-140-120-12.5	140	120	134	12,5	12,2	КПВ-140	

МАНЖЕТА ПОРШНЯ И ШТОКА ТИП 1, ТИП 2 И ТИП 3 АНАЛОГ РЕЗИНОВЫХ МАНЖЕТ (РТИ)

Описание

Уплотнение поршня-штока одностороннего действия с симметричными кромками, для использования, как для уплотнения штока, так и поршня.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- простая конструкция канавки
- экономически выгодное уплотнение

Материалы

Исполнение 1:

Полиуретан (TPU) "Desythane" 85A

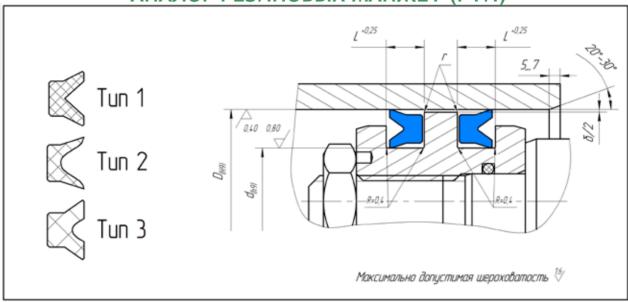
Исполнение 2:

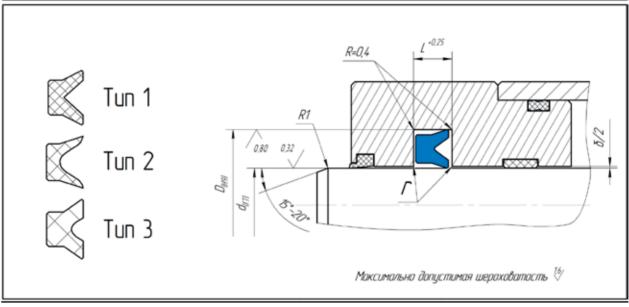
Полиуретан (TPU) "Sealan" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Технические данные


Исполнение 1:


- температура -40°С... +100°С
- скорость скольжения до 0.5 м/с
- рабочее давление жидкости 25 МПа
- среда минеральные масла и водно-масляные эмульсии

Исполнение 2:

- температура -35°С... +110°С
- скорость скольжения до 0.5 м/с
- рабочее давление жидкости 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ПОРШНЯ И ШТОКА (ГОСТ 14896-84; ГОСТ 6969-54; ТУ 38005204-84) ТИП 1, ТИП 2 И ТИП 3 АНАЛОГ РЕЗИНОВЫХ МАНЖЕТ (РТИ)

		Рекомендации по	допускам и размерам									
r		удаление острых кромок r ≤0.3 mm										
	Pa	бочее давление при мак	ссимально допустимом за	зоре								
	размер профиля > 16 MPa > 25 MPa > 32 MPa > 40 MPa											
	≤5	0.50 mm	0.40 mm	0.35 mm								
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm							
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm							
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm							

Код	Код Евро	Обозначение	D	d	L	Кольцо защитное	Цена TPU
P123	R123E	1-28-14-10.0	28	14	11.0	-	
P108	R108E	1-50-40-7.0	50	40	8.5	-	
P109	R109E	1-60-50-7.0	60	50	8.5	-	
P110	R110E	1-63-48-9.0	63	48	11.0	-	

МАНЖЕТА ПОРШНЯ И ШТОКА ТИП 1, ТИП 2 И ТИП 3 АНАЛОГ РЕЗИНОВЫХ МАНЖЕТ (РТИ)

Код	Код Евро	Обозначение	D	d	L	Кольцо защитное	Цена TPU
P111	R111E	1-78-63-9.0	78	63	11.0	-	
P101	R101E	1-80-65-9.0	80	65	11.0	-	
P121	R121E	1-85-70-9.0	85	70	11.0	-	
P112	R112E	1-100-80-10.0	100	80	12.0	-	
P102	R102E	1-110-90-10.0	110	90	12.0	-	
P113	R113E	1-125-105-10.0	125	105	12.0	-	
P122	R122E	1-125-110-10.5	125	110	12.5	-	
P106	R106E	1-140-120-10.0	140	120	12.0	-	
P132	R132E	1-160-140-10.0	160	140	12,0	-	
P130	R130E	1-180-160-10.0	180	160	12,0	-	
P131	R131E	1-200-180-10.0	200	180	12,0	-	
P105	R105E	2-40-60-10.0	40	60	12.0	-	
P115	R115E	2-75-100-12.5	75	100	15.5	-	
P103	R103E	70*55-10.5	70	55	12.0	-	
P104	R104E	80*55-12.5 (ПЭК 34008)	80	55	15.5	-	
P114	R114E	3-80-55-17.0	80	55	18.5	-	
P118	R118E	3-80-60-12.0	80	60	15.5	-	
P119	R119E	3-100-80-12.0	100	80	15.5	-	
P120	R120E	3-120-90-17.0	120	90	21.0	-	
P129	R129E	3-125-95-17.0	125	95	21.0	-	
P133	R133E	3-160-130-17.0	160	130	21.0	-	
P107	R107E	MK I-125-100-18.0	125	100	20.0	КПВ-125/1	

УПЛОТНИТЕЛЬНЫЕ ЭЛЕМЕНТЫ ШТОКА

2.0	_	технич	еские характер	истики		
Профиль	Тип	давл. МПа	скорость м/с	темп. °С	Материал	Стр.
	DP2	40	2.0	-50+100	NBR+TPE	40
-	DP4	40	2.0	-50+100	NBR+TPE	44
-	DP5	40	2.0	-50+100	NBR+TPE	48
	MPU	40			NBR+TPU	
	MPU/L	40	0.5	-35+110	NBR+TPU	50
	MPU/2S	50			NBR+TPU+PA	
	MP	40			TPU	
	MP/L	40	0.5	-35+110	TPU	54
	MP/LA	50			TPU+POM	
	MPS	40			TPU	
	MPS/L	40	0.5	-35+110	TPU	58
	MPS/LA	50			TPU+POM	
	МТ	40	0.5	-35+110	TPU	60
	типа «КАМАЗ»	40			TPU; NBR+TPU	
	н/о	40	0.5	-35+110	TPU+PA; NBR+TPU+PA	62
	типа «КАМАЗ» с/о	40	0.5	-35+110	TPU	66
	MZ/L	40	0.5	-35+110	TPU	68
	MZT	40	0.5	-35+110	TPU	70
	MPC	40	0.5	-35+110	TPU	72
	MK/L	40	0.5	-35+110	TPU	74

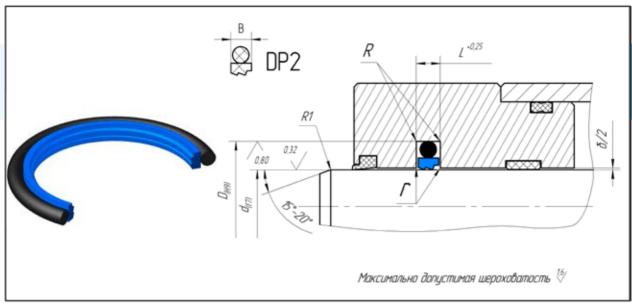
Описание

DP2 - уплотнение штока одностороннего действия, состоящее из двух частей: одного неразъемного профильного кольца и поджимного кольца круглого сечения R1.

Свойства

- Благодаря специальному профилю, может использоваться в паре или перед U-образным кольцом.
- Высокая износостойксть
- Высокая скорость скольжения
- Минимальный статический и динамический коэффициент трения
- Компактность
- Простая конструкция канавки

Материалы


Уплотнительное кольцо - полиэфир (TPE) "HYTREL" 72D

Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)
- скорость скольжения до 2,0 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

		Рекомендации по	допускам и размерам		
R	0 mm $< d \le 50$ mm	$50mm < d \le 100mm$	$100mm < d \le 150mm$	d ≥ 150	0mm
K	max 0.30 mm	max 0.60 mm	max 0.80 mm	max 1	mm
r		удаление о	стрых кромок r ≤0.3 mm		
	Pa	бочее давление при мак	симально допустимом за	зоре	
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa
	≤5	0.50 mm	0.40 mm	0.35 mm	
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ
Б300сб	B300c	DP2-020	20	30,7	4,2	4,0	R1-020 (24.5x3.6)	
Б301сб	B301c	DP2-025	25	35,7	4,2	4,0	R1-025 (29.5x3.6)	
Б314сб	B314c	DP2-030	30	40,7	4,2	4,0	R1-030 (35.0x3.6)	
Б302сб	B302c	DP2-032	32	42,7	4,2	4,0	R1-032 (37.0x3.6)	
Б316сб	B316c	DP2-036	36	46,7	4,2	4,0	R1-036 (41.0x3.6)	
Б303сб	B303c	DP2-040	40	55,1	6,3	6,0	R1-040 (43.8x5.3)	
Б304сб	B304c	DP2-045	45	60,1	6,3	6,0	R1-045 (50.2x5.3)	
Б318сб	B318c	DP2-048	48	63,5	6,3	6,0	R1-048 (54.0x5.3)	
Б305сб	B305c	DP2-050	50	65,1	6,3	6,0	R1-050 (56.2x5.3)	
Б320сб	B320c	DP2-055	55	70,1	6,3	6,0	R1-055 (59,7x5.3)	
Б306сб	B306c	DP2-056	56	71,1	6,3	6,0	R1-056 (59.7x5.3)	
Б317сб	B317c	DP2-060	60	75,1	6,3	6,0	R1-060 (66.0x5.3)	
Б307сб	B307c	DP2-063	63	78,1	6,3	6,0	R1-063 (69.2x5.3)	
Б308сб	B308c	DP2-070	70	85,1	6,3	6,0	R1-070 (75.6x5.3)	
Б323сб	B323c	DP2-075	75	90,1	6,3	6,0	R1-075 (81.9x5.3)	
Б309сб	В309с	DP2-080	80	95,1	6,3	6,0	R1-080 (85.1x5.3)	
Б322сб	B322c	DP2-085	85	100,1	6,3	6,0	R1-085 (91.4x5.3)	
Б310сб	B310c	DP2-090	90	105,1	6,3	6,0	R1-090 (94.6x5.3)	
Б311сб	B311c	DP2-100	100	115,1	6,3	6,0	R1-100 (104.1x5.3)	

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена TPE
Б319сб	B319c	DP2-110	110	125,1	6,3	6,0	R1-110 (116.8x5.3)	
Б321сб	B321c	DP2-125	125	140,1	6,3	6,0	R1-125 (129.5x5.3)	

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ

Описание

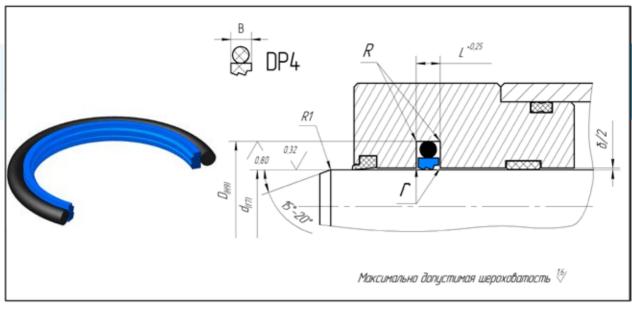
DP4 - уплотнение штока одностороннего действия, состоящее из двух частей: одного неразъемного профильного кольца и поджимного кольца круглого сечения R1.

Свойства

- Благодаря специальному профилю, может использоваться в паре или перед U-образным кольцом.
- Высокая износостойксть
- Высокая скорость скольжения
- Минимальный статический и динамический коэффициент трения
- Компактность
- Простая конструкция канавки

Материалы

Уплотнительное кольцо - полиэфир (TPE) "HYTREL" 72D


Поджимное кольцо - резина маслобензостойкая 7В-14-1

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

<u>Технические данные</u>

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)
- скорость скольжения до 2,0 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водномасляные эмульсии

	Рекомендации по допускам и размерам										
R	0 mm $< d \le 50$ mm	$d \le 50 \text{mm}$ $50 \text{mm} < d \le 100 \text{mm}$ $100 \text{mm} < d \le 150 \text{mm}$			0mm						
K	max 0.30 mm	max 0.60 mm	max 0.80 mm	mm							
r		удаление о	стрых кромок r ≤0.3 mm								
	Pa	бочее давление при мак	симально допустимом за	зоре							
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa						
	≤5	0.50 mm	0.40 mm	0.35 mm							
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm						
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm						
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm						

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ
Г300сб	G300c	DP4-020	20	31,1	4,2	4,0	R1-020 (24.5x3.6)	
Г301сб	G301c	DP4-025	25	36,1	4,2	4,0	R1-025 (29.5x3.6)	
Г315сб	G315c	DP4-030	30	41,1	4,2	4,0	R1-030 (35.0x3.6)	
Г302сб	G302c	DP4-032	32	43,1	4,2	4,0	R1-032 (37.0x3.6)	
Г317сб	G317c	DP4-036	36	47,1	4,2	4,0	R1-036 (41.0x3.6)	
Г303сб	G303c	DP4-040	40	55,5	6,3	6,0	R1-040 (43.8x5.3)	
Г304сб	G304c	DP4-045	45	60,5	6,3	6,0	R1-045 (50.2x5.3)	
Г320сб	G320c	DP4-048	48	63,5	6,3	6,0	R1-048 (54.0x5.3)	
Г305сб	G305c	DP4-050	50	65,5	6,3	6,0	R1-050 (56.2x5.3)	
Г318сб	G318c	DP4-055	55	70,5	6,3	6,0	R1-055 (59,7x5.3)	
Г306сб	G306c	DP4-056	56	71,5	6,3	6,0	R1-056 (59.7x5.3)	
Г307сб	G307c	DP4-060	60	75,5	6,3	6,0	R1-060 (66.0x5.3)	
Г308сб	G308c	DP4-063	63	78,5	6,3	6,0	R1-063 (69.2x5.3)	
Г309сб	G309c	DP4-070	70	85,5	6,3	6,0	R1-070 (75.6x5.3)	
Г319сб	G319c	DP4-075	75	90,5	6,3	6,0	R1-075 (81.9x5.3)	
Г310сб	G310c	DP4-080	80	95,5	6,3	6,0	R1-080 (85.1x5.3)	
Г323сб	G323c	DP4-085	85	100,5	6,3	6,0	R1-085 (91.4x5.3)	
Г311сб	G311c	DP4-090	90	105,5	6,3	6,0	R1-090 (94.6x5.3)	
Г312сб	G312c	DP4-100	100	115,5	6,3	6,0	R1-100 (104.1x5.3)	

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ
Г321сб	G321c	DP4-110	110	125,5	6,3	6,0	R1-110 (116.8x5.3)	
Г322сб	G322c	DP4-125	125	140,5	6,3	6,0	R1-125 (129.5x5.3)	
						-		

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ

Описание

DP5 - уплотнение штока одностороннего действия, состоящее из двух частей: одного неразъемного профильного кольца и поджимного кольца круглого сечения R1.

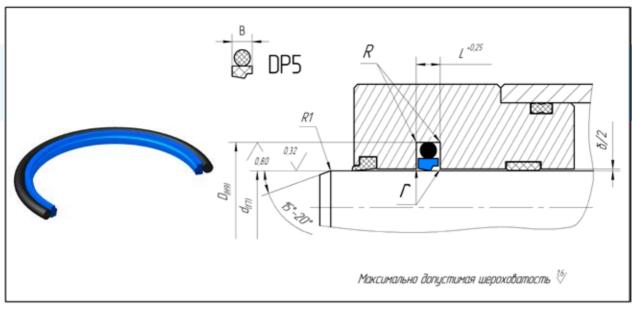
Свойства

- Благодаря специальному профилю, может использоваться в паре или перед U-образным кольцом.
- Высокая износостойксть
- Минимальный статический и динамический коэффициент трения
- Компактность
- Простая конструкция канавки
- Монтаж производится как в открытую так и в закрытую канавку

Материалы

Уплотнительное кольцо - полиэфир (TPE) "HYTREL" 72D

Поджимное кольцо - резина масло-бензостойкая 7В-14-1


Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

Рекомендуется установка не менее двух уплотнений в один уплотняемый узел

- температура
- -50°С... +100°С (Поджимное кольцо -резина 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)
- скорость скольжения до 2,0 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

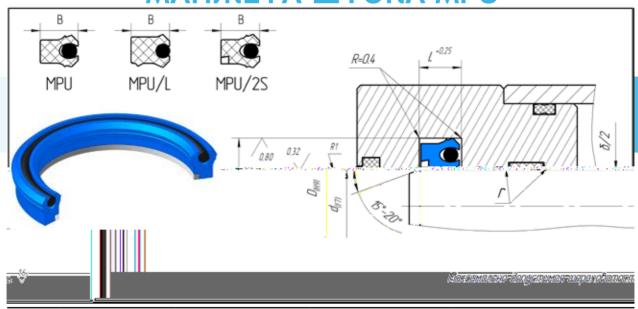
			Реком	иендации	по допус	кам и раз	вмерам				
	0mm <	d ≤ 50mm	ı	d ≤ 100mn		mm < d ≤		d ≥ 150	Omm		
R	max (0.30 mm	max 0	.60 mm		max 0.80	mm	max 1	mm		
					даление острых кромок r ≤0.3 mm						
				удалени	СОСТРЫК	промонт	_0.0 111111				
		Pa	бочее давле	ение при 1	максимал	ьно допу	стимом за	азоре			
	размер профиля > 10			MPa		> 25 M	Pa	> 32 MPa	> 4	10 MPa	
δ		4,2	0.60) mm		0.50 m	m	0.40 mm	0.3	30 mm	
Код	Код Евро	Обозн	ачение	d	D	L	В, мм	Кольцо поджимн круглого сечени		Цена ТРЕ	
Д300сб	D300c	DP5	5-020	20	27,5	3,2	3,0	R1-020/1 (21.5x2	2.5)		
Д302сб	D302c	DP5	5-025	25	32,5	3,2	3,0	R1-025/1 (28.5x2	2.5)		
Д304сб	D304c	DP5	5-030	30	37,5	3,2	3,0	R1-030/1 (33.0x2	2.5)		
Д305сб	D305c	DP5	5-032	32	39,5	3,2	3,0	R1-032/1 (35.0x2	2.5)		
Д307сб	D307c	DP5	5-036	36	43,5	3,2	3,0	R1-036/1 (39.0x2	2.5)		
Д308сб	D308c	DP5	5-040	40	50,7	4,2	4,0	R1-040/1 (44.0x3	3.6)		
Д310сб	D310c	DP5	5-045	45	55,7	4,2	4,0	R1-045/1 (49.0x3	3.6)		
Д311сб	D311c	DP5	5-050	50	60,7	4,2	4,0	R1-050/1 (54.0x3	3.6)		
Д312сб	D312c	DP5	5-055	55	65,7	4,2	4,0	R1-055/1 (59.0x3	3.6)		
Д313сб	D313c	DP5	5-056	56	66,7	4,2	4,0	R1-056/1 (59.0x3	3.6)		
Д314сб	D314c	DP5	5-060	60	70,7	4,2	4,0	R1-060/1 (64.5x3	3.6)		
Д315сб	D315c	DP5	5-063	63	73,7	4,2	4,0	R1-063/1 (67.5x3	3.6)		
Д316сб	D316c	DP5	5-070	70	80,7	4,2	4,0	R1-070/1 (74.5x3	3.6)		
Д318сб	D318c	DP5	5-080	80	90,7	4,2	4,0	R1-080/1 (84.5x3	3.6)	_	
Д320сб	D320c	DP5	5-090	90	100,7	4,2	4,0	R1-090/1 (94.0x3	3.6)		
Д322сб	D322c	DP5	5-100	100	110,7	4,2	4,0	R1-100/1 (104.0x	3.6)		
Д324сб	D324c	DP5	5-110	110	120,7	4,2	4,0	R1-110/1 (113.0x	3.6)		

Описание

MPU - уплотнение штока одностороннего действия, состоящее из двух частей: основного эластичного уплотнительного элемента и амортизирующего резинового кольца из масло-бензостойкой резины, установленного в основной уплотнительный элемент MPU/L - уплотнение штока одностороннего действия, состоящее из двух частей: основного эластичного уплотнительного элемента с дополнительной уплотнительной кромкой и амортизирующего резинового кольца из масло-бензостойкой резины, установленного в основной уплотнительный элемент MPU/2S - уплотнение штока одностороннего действия, состоящее из трех частей: основного эластичного уплотнительного элемента, амортизирующего резинового кольца из масло-бензостойкой резины, установленного в основной уплотнительный элемент и опорного кольца из полиацеталя.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- улучшенный уплотнительный зазор за счет активного защитного кольца
- простая конструкция канавки


Материалы

Основной уплотнительный элемент - полиуретан (TPU) "SEALAN" 93A Кольцо противовыдавливания - полиамид (PA) Амортизирующее кольцо - резина маслобензостойкая 7B-14-1

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°C +110°C
- скорость скольжения до 0,5 м/с
- рабочее давление MPU, MPU/L - до 40 МПа MPU/2S - до 50 МПа
- среда минеральные масла и водно-масляные эмульсии

	r	удаление острых кромок r ≤0.3 mm	
--	---	----------------------------------	--

Рабочее давление при максимально	допустимом зазоре
----------------------------------	-------------------

	таоочее давление при максимально допустимом зазоре										
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa						
	≤5	0.50 mm	0.40 mm	0.35 mm	-						
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm						
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm						
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm						

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо амортизирующее круглого сечения	Кольцо противовыдавливания квадратного сечения	Цена TPU
A423	A423	MPU/L-20-28-6.3	20	28	6.3	5,8	R2-020	-	
A439	A439	MPU/L-22-30-6.3	22	30	6.3	5,8	R2-022	-	
A424	A424	MPU/L-25-33-6.3	25	33	6.3	5,8	R2-025	-	
A445	A445	MPU/L-25.4-31.5-5.75	25,4	31,5	5.75	5	R2-026	-	
A440	A440	MPU/L-28-36-6.3	28	36	6.3	5,8	R2-028	-	
A425	A425	MPU/L-30-38-6.3	30	38	6.3	5,8	R2-030	-	
A450	A450	MPU/L 30-40-7.1/8.1	30	40	8.1	7.1	R2-030/2	-	
A446	A446	MPU/L-31.75-41.27-7.5	31,75	41,27	7.5	6,5	R2-034	-	
A426	A426	MPU/L-32-40-6.3	32	40	6.3	5,8	R2-032	-	
A427	A427	MPU/L-35-43-6.3	35	43	6.3	5,8	R2-035	-	
A441	A441	MPU/L-36-44-6.3	36	44	6.3	5,8	R2-036	-	
A447	A447	MPU/L-38.1-47.62-7.5	38,1	47,62	7.5	6,5	R2-041	-	
A428	A428	MPU/L-40-48-6.3	40	48	6.3	5,8	R2-040	-	
A448	A448	MPU/L-44.45-53.97-10.5	44,45	53,97	10.5	9,5	R2-048	-	
A442	A442	MPU/L-45-53-6.3	45	53	6.3	5,8	R2-045	-	
A443	A443	MPU/L-40-50-8.0	40	50	8.0	7,0	R2-040	-	
A451	A451	MPU/L 45-55-6.0/7.0	45	55	7.0	6.0	R2-045/2	-	
A444	A444	MPU/L-45-55-8.0	45	55	8.0	7,0	R2-045	-	
A429	A429	MPU/L-50-60-8.0	50	60	8.0	7,0	R2-050	-	
A430	A430	MPU/L-55-65-8.0	55	65	8.0	7,0	R2-055	-	
A402	A402	MPU-40-55-13	40	55	13	11,5	R2-040	-	
A421	A421	MPU-45-60-13	45	60	13	11,5	R2-045	-	
A405	A405	MPU-50-65-13	50	65	13	11,5	R2-050	-	

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо амортизирующее круглого сечения	Кольцо противовыдавливания квадратного сечения	Цена TPU
A422	A422	MPU-55-70-13	55	70	13	11,5	R2-055	-	
A407	A407	MPU-56-71-13	56	71	13	11,5	R2-056	-	
A409	A409	MPU-60-75-13	60	75	13	11,5	R2-060	-	
A410	A410	MPU-63-78-13	63	78	13	11,5	R2-063	-	
A431	A431	MPU-65-80-13	65	80	13	11,5	R2-065	-	
A412	A412	MPU-70-85-13	70	85	13	11,5	R2-070	-	
A432	A432	MPU-75-90-13	75	90	13	11,5	R2-075	-	
A414	A414	MPU-80-95-13	80	95	13	11,5	R2-080	-	
A433	A433	MPU-85-100-13	85	100	13	11,5	R2-085	-	
A416	A416	MPU-90-105-13	90	105	13	11,5	R2-090	-	
A434	A434	MPU-95-110-13	95	110	13	11,5	R2-095	-	
A418	A418	MPU-100-115-13	100	115	13	11,5	R2-100	-	
A435	A435	MPU-105-120-13	105	120	13	11,5	R2-105	-	
A420	A420	MPU-110-125-13	110	125	13	11,5	R2-110	-	
A436	A436	MPU-115-130-13	115	130	13	11,5	R2-115	-	
A437	A437	MPU-120-135-13	120	135	13	11,5	R2-120	-	
A438	A438	MPU-125-140-13	125	140	13	11,5	R2-125	-	
A452	A452	MPU/2S 50-65-11.5/13	50	65	13.0	11.5	R2-050/2	КПВ-050	
A453	A453	MPU/2S 60-75-11.5/13	60	75	13.0	11.5	R2-060/2	КПВ-060	
A411	A411	MPU/2S-63-83-17	63	83	17	15,0	R2-063/3	КПВ-063	
A454	A454	MPU/2S 65-80-11.5/13	65	80	13.0	11.5	R2-065/2	КПВ-065	
A413	A413	MPU/2S-70-90-17	70	90	17	15,0	R2-070/3	КПВ-070	
A415	A415	MPU/2S-80-100-17	80	100	17	15,0	R2-080/3	КПВ-080	
A417	A417	MPU/2S-90-110-17	90	110	17	15,0	R2-090/3	КПВ-090	
A419	A419	MPU/2S-100-120-17	100	120	17	15,0	R2-100/3	КПВ-100	

манжета штока мри

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо амортизирующее круглого сечения	Кольцо противовыдавливания квадратного сечения	Цена ТРU

Описание

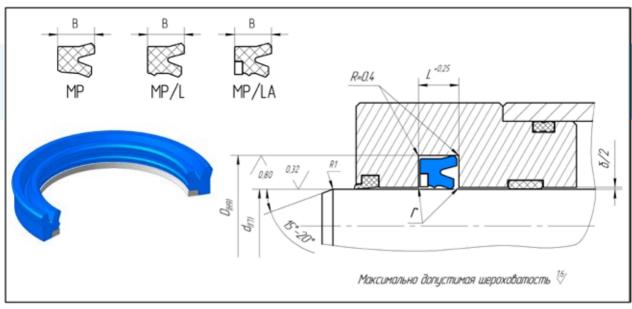
MP - уплотнение штока одностороннего действия, представляющее собой воротниковую манжету с ассиметричным профилем.

МР/L - уплотнение штока одностороннего действия, представляющее собой воротниковую манжету с ассиметричным профилем и дополнительной уплотнительной кромкой, которая улучшает герметизирующие характеристики, а также препятствует попаданию загрязнений со стороны грязесъемника.

МР/LA - уплотнение штока одностороннего действия, состоящее из двух частей: одного эластичного уплотнительного элемента, специально сконструированного с дополнительной уплотнительной кромкой, и одного опорного кольца из термопластичного материала

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- улучшенный уплотнительный зазор за счет активного защитного кольца
- простая конструкция канавки


Материалы

Основной уплотнительный элемент - полиуретан (TPU) "SEALAN" 93A Кольцо противовыдавливания - полиацеталь (POM)

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление MP, MP/L - до 40 МПа MP/LA - до 50 МПа
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам										
r		удаление о	стрых кромок r ≤0.3 mm								
	Рабочее давление при максимально допустимом зазоре										
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa						
	≤5	0.50 mm	0.40 mm	0.35 mm							
δ	> 5 - 7,5	> 5 - 7,5 0.55 mm		0.40 mm	0.35 mm						
	> 7,5 - 12,5 0.60 mm		0.50 mm	0.45 mm	0.40 mm						
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm						

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо защитное квадратного сечения	Цена TPU
Б401	B401	MP-20-28-6.3	20	28	6,3	5,8	-	
Б464	B464	MP-22-30-6.3	22	30	6,3	5,8	-	
Б436	B436	MP/L-22-30-7.0	22	30	7,0	6,3	-	
Б402	B402	MP-25-33-6.3	25	33	6,3	5,8	<u>-</u>	
Б435сб	B435c	MP/LA-25-33-6.3	25	33	6,3	5,8	КПВ-025	
Б426	B426	MP/L-25-35-9.0	25	35	9,0	8,0	-	
Б457	B457	MP-28-36-6.3	28	36	6,3	5,8	-	
Б403	B403	MP-30-38-6.3	30	38	6,3	5,8	-	
Б404	B404	MP-32-40-6.3	32	40	6,3	5,8	-	
Б405	B405	MP/L-32-47-11.0	32	47	11,0	10,0	-	
Б429	B429	MP-35-43-6.3	35	43	6,3	5,8	-	
Б458	B458	MP-36-44-6.3	36	44	6,3	5,8	-	
Б447	B447	MP/L-36-44-6.3	36	44	6,3	5,8	-	
Б406	B406	MP-40-48-6.3	40	48	6,3	5,8	-	
Б407	B407	MP-40-48-9.0	40	48	9,0	8,0	-	
Б437	B437	MP/L-40x50-7.0	40	50	7,0	6,3	-	
Б465	B465	MP-40x50-8.0	40	50	8,0	7,0	-	
Б442	B442	MP/L-40x50-8.0	40	50	8,0	7,0	<u>-</u>	
Б418	B418	MP/L-40-55-12.5	40	55	12,5	11,5	-	
Б459	B459	MP-45-53-6.3	45	53	6,3	58	-	
Б419	B419	MP/L-45-55-8.0	45	55	8,0	7,0	-	

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо защитное квадратного сечения	Цена TPU
Б424	B424	MP/L-45-60-12.5	45	60	12,5	11,5	-	
Б432	B432	MP-48-63-13.0	48	63	13,0	12,0	-	
Б409	B409	MP/L-50-60-8.0	50	60	8,0	7,0	-	
Б433сб	B433c	MP/LA-50-60-8.0	50	60	8,0	7,0	КПВ-050	
Б410	B410	MP/L-50-65-11.0	50	65	11,0	10,0	-	
Б411	B411	MP-50-65-12.5	50	65	12,5	11,5	-	
Б460	B460	MP/L-50-65-12.5	50	65	12,5	11,5	-	
Б412	B412	MP/L-55-65-8.0	55	65	8,0	7,0	-	
Б430	B430	MP/L-55-65-11.0	55	65	11,0	10,0	-	
Б461	B461	MP-56-66-11.0	56	66	11,0	10,0	-	
Б417	B417	MP/L-56-66-11.0	56	66	11,0	10,0	-	
Б421	B421	MP/L-56-71- 11.0	56	71	11,0	10,0	-	
Б431	B431	MP/L-63-73-11.0	63	73	11,0	10,0	-	
Б434сб	B434c	MP/LA-63-73-11.0	63	73	11,0	10,0	КПВ-063/1	
Б414	B414	MP-63-73-13.0	63	73	13,0	12,0	-	
Б462	B462	MP/L-63-73-13.0	63	73	13,0	12,0	-	
Б425	B425	MP/L-63-83-12.5	63	83	12,5	11,5	-	
Б422	B422	MP/L-63-83-13.0	63	83	13,0	12,0	-	
Б427	B427	MP/L-70-80-13.0	70	80	13,0	12,0	-	
Б449	B449	MP/L-75-85-11.0	75	85	11,0	10,0	-	
Б415	B449	MP-80-90-11.0	80	90	11,0	10,0	-	
Б463	B463	MP/L-80-90-11.0	80	90	11,0	10,0	-	
Б416	B416	MP/L-80-90-13.0	80	90	13,0	12,0	-	
Б450	B450	MP/L-95-105-11.0	95	105	11,0	10,0	-	

манжета штока мр

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо защитное квадратного сечения	Цена TPU

Описание

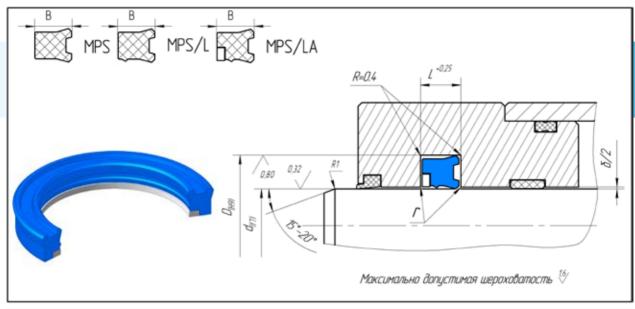
MPS - уплотнение штока одностороннего действия, представляющее собой воротниковую манжету с ассиметричным профилем.

MPS/L - уплотнение штока одностороннего действия, представляющее собой воротниковую манжету с ассиметричным профилем и дополнительной уплотнительной кромкой, которая улучшает герметизирующие характеристики, а также препятствует попаданию загрязнений со стороны грязесъемника.

MPS/LA - уплотнение штока одностороннего действия, состоящее из двух частей: одного эластичного уплотнительного элемента, специально сконструированного с дополнительной уплотнительной кромкой, и одного опорного кольца из термопластичного материала

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- улучшенный уплотнительный зазор за счет активного защитного кольца
- простая конструкция канавки


<u>Материалы</u>

Основной уплотнительный элемент - полиуретан (TPU) "SEALAN" 93A Кольцо противовыдавливания - полиацеталь (POM)

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°C +110°C
- скорость скольжения до 0,5 м/с
- рабочее давление
 MPS, MPS/L до 40 МПа
 MPS/LA до 50 МПа
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам									
r	удаление острых кромок r ≤0.3 mm									
	Pa	бочее давление при мак	ссимально допустимом за	зоре						
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa					
	≤5	0.50 mm	0.40 mm	0.35 mm						
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm					
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm					
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm					

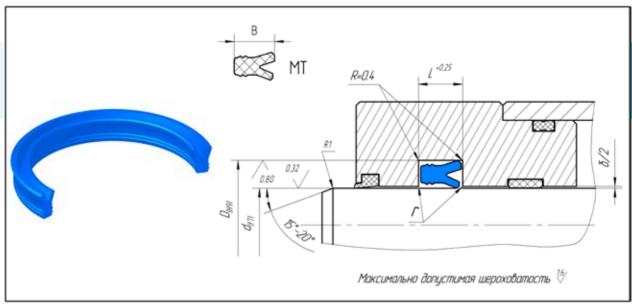
Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо защитное квадратного сечения	Цена TPU
B401	V401	MPS/L-32-47-11.0	32	47	11	10.0	-	
B402	V402	MPS/L-40-55-11.0	40	55	11	10.0	-	
B403	V403	MPS/L-50-65-11.0	50	65	11	10.0	-	
B404	V404	MPS/L-55-65-8.0	55	65	8.0	7.0	-	
B405	V405	MPS/L-60-68-9.0	60	68	9	8.3	-	
B406	V406	MPS/L-60-75-11.0	60	75	11	10.3	-	
B407	V407	MPS/L-60-75-13.0	60	75	13	11.7	-	

Описание

МТ - уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки


Материалы

Полиуретан (TPU) "SEALAN" 93A

<u>Применение</u>

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

		Рекомендации по	лопускам и т	размерам				
r			стрых кромо		<u> </u>			
		Рабочее давление при мак			1			
	размер профиля	1	> 25		> 32 N		>	40 MPa
	≤5	0.50 mm	0.40		0.35 r			
δ	> 5 - 7,5	0.55 mm	0.45	mm	0.40 r	nm	0	.35 mm
	> 7,5 - 12,5	0.60 mm	0.50	mm	0.45 n	nm	0	.40 mm
-	15	0.65 mm	0.55	mm	0.45 r	nm	0	.40 mm
Код	Код Евро	Обозначение	d	D	L	В		Цена TPU
Γ200	G200	MT-56-66-12.0	56	66	12.0	11.0		
Γ201	G201	MT-75-85-12.0	75	85	12.0	11.0		
Γ202	G202	MT-95-105-12.0	95	105	12.0	11.0		
Г203	G203	MT-115-125-12.0	115	125	12.0	11.0		
Γ204	G204	MT-115-127-13.0	115	127	13.0	12.0		
Γ205	G205	MT-117-127-12.0	117	127	12.0	11.0		
Г206	G206	MT-142-152-12.0	142	152	12.0	11.0		

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА КАМАЗ H/O

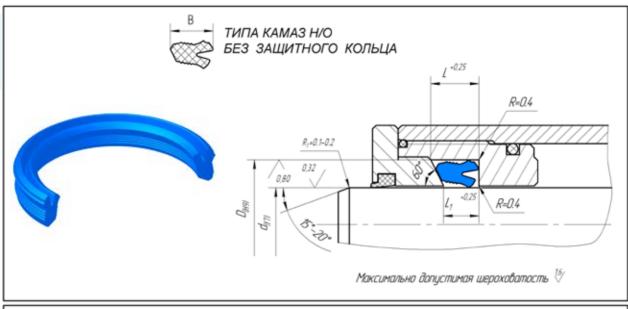
Описание

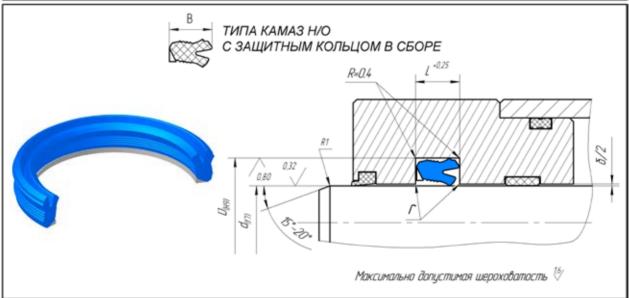
Уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника. Может поставляться в сборе с кольцом противовыдавливания.

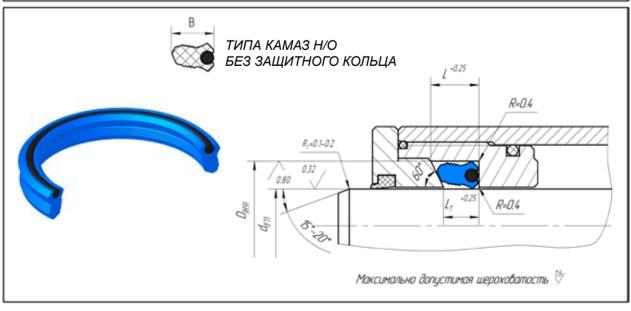
Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки

Материалы

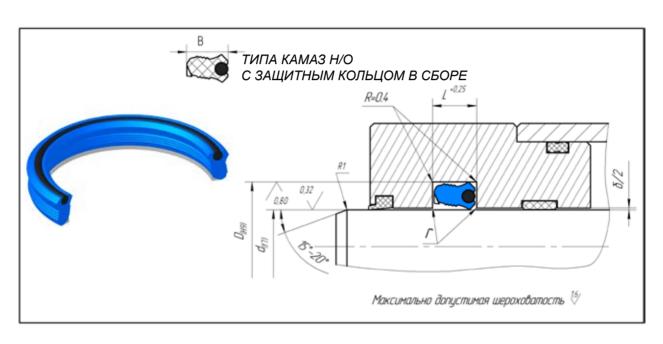

Основной уплотнительный элемент - полиуретан (TPU) "DESYTHANE" 93A Кольцо защитное - полиамид (PA) Амортизирующее кольцо - резина маслобензиностойкая 7В-14-1


Применение


- дорожно-строительная техника
- горное оборудование
- черная металлургия
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°C +110°C
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА КАМАЗ Н/О



МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА КАМАЗ H/O

	Рекомендации по допускам и размерам									
r		удаление острых кромок r ≤0.3 mm								
•	Pa	бочее давление при мак	ссимально допустимом за	зоре						
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa					
	≤5	0.50 mm	0.40 mm	0.35 mm						
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm					
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm					
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm					

Код	Код Евро	Обозначение	d	D	L	L1	В	Кольцо амортизирующее круглого сечения	Кольцо противо выдавливания	Цена TPU
E200	E200E	12.8603403-14	56	66	18.0	15.4	12.6	-	-	
E201	E201E	13.8603403-14	75	86	18.3	15.4	13.0	-	-	
E202	E202E	14.8603403-14	95	107	18.6	15.4	13.0	-	-	
E203	E203E	15.8603403-14	117	130	19.0	16.0	14.0	-	-	
E204	E204E	16.8603403-14	142	156	19.0	16.0	14.0	-	-	
E205	E205E	17.8603403-14	170	184	19.0	16.0	14.0	_	-	

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА КАМАЗ Н/О

E20066 E2006E 12.8603403-14 56 66 15.0 - 12.6 - KIB-K56 E20166 E201E 13.8603403-14 75 86 15.0 - 13.0 - KIB-K75 E20266 E2026E 15.8603403-14 170 184 19.0 16.0 - 14.0 - KIB-K117 E20465 E2046E 17.8603403-14 170 184 16.0 - 14.0 - KIB-K170 E202 E220 12.8603403-14 75 86 18.0 15.4 11.9 R12 - E221 13.8603403-14 170 184 15.0 16.0 13.0 R16 E223 E225 17.8603403-14 170 184 19.0 16.0 13.0 R16 - E226 E226 E226 E226 E226 E226 E226 E	Код	Код Евро	Обозначение	d	D	L	L1	В	Кольцо амортизирующее круглого сечения	Кольцо противо выдавливания	Цена TPU
E202c6 E202cE 14.8603403-14 95 107 15.0 - 13.0 - КПВ-К95 E203c6 E203cE 15.8603403-14 117 130 16.0 - 14.0 - КПВ-К117 E204c6 E204cE 16.8603403-14 142 156 16.0 - 14.0 - КПВ-К142 E205c6 E205cE 17.8603403-14 170 184 16.0 - 14.0 - КПВ-К170 E220 E220 12.8603403-14 56 36 18.0 15.4 11.9 R12 - E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R16 - E224 E225 E225 17.	Е200сб	E200cE	12.8603403-14	56	66	15.0	-	12.6	-	КПВ-К56	
E203c6 E203cE 15.8603403-14 117 130 16.0 - 14.0 - КПВ-К117 E204c6 E204cE 16.8603403-14 142 156 16.0 - 14.0 - КПВ-К142 E205c6 E205cE 17.8603403-14 170 184 16.0 - 14.0 - КПВ-К170 E220 E220 12.8603403-14 56 36 18.0 15.4 11.9 R12 - E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 170 184 19.0 16.0 13.0 R16 - E220c6 E220cE 12.8603403-14	Е201сб	E201cE	13.8603403-14	75	86	15.0	-	13.0	-	КПВ-К75	
E204c6 E204cE 16.8603403-14 142 156 16.0 - 14.0 - КПВ-К142 E205c6 E205cE 17.8603403-14 170 184 16.0 - 14.0 - КПВ-К170 E220 E220 12.8603403-14 56 36 18.0 15.4 11.9 R12 - E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 170 184 19.0 16.0 13.0 R16 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 КПВ-К56 E221c6 E222c6 E222cE 14	Е202сб	E202cE	14.8603403-14	95	107	15.0	-	13.0	-	КПВ-К95	
E205c6 E205cE 17.8603403-14 170 184 16.0 - 14.0 - KΠΒ-Κ170 E220 E220 12.8603403-14 56 36 18.0 15.4 11.9 R12 - E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 170 184 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220c8 12.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E221c6 E222c6 E223c6 E223c6 </td <td>Е203сб</td> <td>E203cE</td> <td>15.8603403-14</td> <td>117</td> <td>130</td> <td>16.0</td> <td>-</td> <td>14.0</td> <td>-</td> <td>КПВ-К117</td> <td></td>	Е203сб	E203cE	15.8603403-14	117	130	16.0	-	14.0	-	КПВ-К117	
E220 E220 12.8603403-14 56 36 18.0 15.4 11.9 R12 - E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 142 156 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 KΠΒ-K56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R14 KΠΒ-K95 E223c6 E223cE 14.8603403-14 117 130 16.0 - 13.0 R15 KΠΒ-K117 E22	Е204сб	E204cE	16.8603403-14	142	156	16.0	-	14.0	-	КПВ-К142	
E221 E221 13.8603403-14 75 86 18.3 15.4 11.9 R13 - E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 142 156 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 KПВ-К56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 KПВ-К17 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R16 КПВ-К117	Е205сб	E205cE	17.8603403-14	170	184	16.0	-	14.0	-	КПВ-К170	
E222 E222 14.8603403-14 95 107 18.3 15.4 11.9 R14 - E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 142 156 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 KПВ-К56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 KПВ-К95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R16 КПВ-К117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142 </td <td>E220</td> <td>E220</td> <td>12.8603403-14</td> <td>56</td> <td>36</td> <td>18.0</td> <td>15.4</td> <td>11.9</td> <td>R12</td> <td>-</td> <td></td>	E220	E220	12.8603403-14	56	36	18.0	15.4	11.9	R12	-	
E223 E223 15.8603403-14 117 130 19.0 16.0 13.0 R15 - E224 E224 16.8603403-14 142 156 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220c8 12.8603403-14 56 66 15.0 - 11.9 R12 KПВ-К56 E221c6 E221c8 13.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E222c6 E222c8 14.8603403-14 95 107 15.0 - 11.9 R14 KПВ-К95 E223c6 E223c8 15.8603403-14 117 130 16.0 - 13.0 R15 КПВ-К117 E224c6 E224c8 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	E221	E221	13.8603403-14	75	86	18.3	15.4	11.9	R13	-	
E224 E224 16.8603403-14 142 156 19.0 16.0 13.0 R16 - E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 KПВ-К56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 KПВ-К95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 КПВ-К117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	E222	E222	14.8603403-14	95	107	18.3	15.4	11.9	R14	-	
E225 E225 17.8603403-14 170 184 19.0 16.0 13.0 R17 - E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 KПВ-К56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 KПВ-К75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 KПВ-К95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 КПВ-К117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	E223	E223	15.8603403-14	117	130	19.0	16.0	13.0	R15	-	
E220c6 E220cE 12.8603403-14 56 66 15.0 - 11.9 R12 ΚΠΒ-Κ56 E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 ΚΠΒ-Κ75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 ΚΠΒ-Κ95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 ΚΠΒ-Κ117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 ΚΠΒ-Κ142	E224	E224	16.8603403-14	142	156	19.0	16.0	13.0	R16	-	
E221c6 E221cE 13.8603403-14 75 86 15.0 - 11.9 R13 КПВ-К75 E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 КПВ-К95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 КПВ-К117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	E225	E225	17.8603403-14	170	184	19.0	16.0	13.0	R17	-	
E222c6 E222cE 14.8603403-14 95 107 15.0 - 11.9 R14 КПВ-К95 E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 КПВ-К117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	Е220сб	E220cE	12.8603403-14	56	66	15.0	-	11.9	R12	КПВ-К56	
E223c6 E223cE 15.8603403-14 117 130 16.0 - 13.0 R15 ΚΠΒ-Κ117 E224c6 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 ΚΠΒ-Κ142	Е221сб	E221cE	13.8603403-14	75	86	15.0	-	11.9	R13	КПВ-К75	
E224c5 E224cE 16.8603403-14 142 165 16.0 - 13.0 R16 КПВ-К142	Е222сб	E222cE	14.8603403-14	95	107	15.0	-	11.9	R14	КПВ-К95	
	Е223сб	E223cE	15.8603403-14	117	130	16.0	-	13.0	R15	КПВ-К117	
E225c6 E225cE 17.8603403-14 170 184 16.0 - 13.0 R17 KПВ-К170	Е224сб	E224cE	16.8603403-14	142	165	16.0	-	13.0	R16	КПВ-К142	
	Е225сб	E225cE	17.8603403-14	170	184	16.0	-	13.0	R17	КПВ-К170	

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА «КАМАЗ» С/О

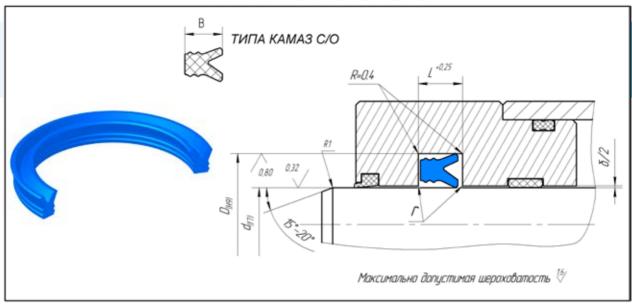
Описание

Уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки

Материалы


Полиуретан (TPU) "SEALAN" 93A

<u>Применение</u>

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ ТИПА КАМАЗ С/О

				Реко	менда	ции по	допускам и размерам						
r					удал	ение о	стрых кромок r ≤0.3 mm						
			Работ	тее парт	тешие т	inii Mai	ксимально допустимом за	20ne					
	l pa	змер профил			6 MPa	три маг	> 25 MPa	> 32 MPa	> 40 N	MD ₂			
	Pa	змер профил. ≤5	А		60 mm		0.40 mm	/ 40 1	v11 a				
δ		> 5 - 7,5			55 mm		0.45 mm	0.35 mm 0.40 mm	0.35 1	mm			
O		> 7,5 - 12,5	_		60 mm		0.50 mm	0.45 mm	0.40 1				
		15			55 mm		0.55 mm	0.45 mm	0.40 1				
16	Код	05				D				Цена			
Код	Евро	Обозначение	d	D	L	В, мм	Примен	яемость		Τ̈́PU			
E206	E206	11.8603403	40	50	9.0	8.5	603п р/к Г/ц подъёма кузова КАМ	1АЗ-55102 (колхозник)					
E207	E207	12.8603403	56	66	9.0	8.5	505п р/к Г/цил. подъема прицепа 603п р/к Г/ц подъёма кузова КАМ 604п р/к Г/ц подъёма кузова (3-х 616п р/к Г/цил. подъема кузова (3-х 616п р/к Г/цил. подъема кузова (КАМАЗ-55102 (колхозник); 618п р/к Г/цил. опрокидывающег 55102-8603010 КАМАЗ-5511; 622п р/к Г/цил. подъёма кузова к	IAЗ-55102 (колхозник); штоковый) КАМАЗ-551 5-и шток.) (полный) о механизма (3-х шток					
E208	E208	13.8603403	75	85	9.0	8.5	505п р/к Г/цил. подъема прицепа 514п р/к Г/цил. подъема прицепа 603п р/к Г/ц подъёма кузова КАМ 604п р/к Г/ц подъёма кузова (3-х 616п р/к Г/цил. подъема кузова (3-х 616п р/к Г/цил. подъема кузова (КАМАЗ-55102 (колхозник); 618п р/к Г/цил. опрокидывающег 55102-8603010 КАМАЗ-5511; 622п р/к Г/цил. подъёма кузова к	і 2ПТС-9; ІАЗ-55102 (колхозник); штоковый) КАМАЗ-551 5-и шток.) (полный) о механизма (3-х шток					
E209	E209	14.8603403	95	105	9.0	8.5	505п р/к Г/цил. подъема прицепа 2ПТС-6; 514п р/к Г/цил. подъема прицепа 2ПТС-9; 603п р/к Г/ц подъёма кузова КАМАЗ-55102 (колхозник); 604п р/к Г/ц подъёма кузова (3-х штоковый) КАМАЗ-5511; 616п р/к Г/цил. подъема кузова (5-и шток.) (полный) КАМАЗ-55102 (колхозник); 618п р/к Г/цил. опрокидывающего механизма (3-х шток.) 55102-8603010 КАМАЗ-5511; 622п р/к Г/цил. подъёма кузова КАМАЗ-55111						
E210	E210	15.8603403	117	127	9.0	8.5	514п р/к Г/цил. подъема прицепа 2ПТС-9; 603п р/к Г/ц подъёма кузова КАМАЗ-55102 (колхозник); 616п р/к Г/цил. подъема кузова (5-и шток.) (полный) КАМАЗ-55102 (колхозник)						
E211	E211	16.8603403	142	152	9.0	8.5	603п р/к Г/ц подъёма кузова КАМ 616п р/к Г/цил. подъема кузова (КАМАЗ-55102 (колхозник)						
E212	E212	17.8603403	170	180	9.0	8.5	603п р/к Г/ц подъёма кузова КАМ	1АЗ-55102 (колхозник)					

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ PEMOHTHAЯ MZ/L

Описание

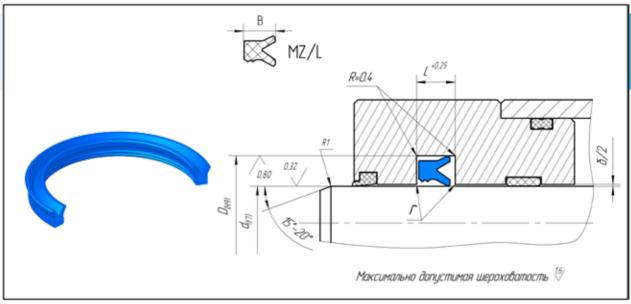
MZ/L - уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника.

Применяется в гидросистемах при возможности возникновения сильного осевого смещения, а также заниженных/изношенных штоках.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки
- работает при заниженных/изношенных штоках

<u>Материалы</u>


Полиуретан (TPU) "SEALAN" 93A

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ РЕМОНТНАЯ MZ/L

	Рекомендации по допускам и размерам									
r		удаление острых кромок r ≤0.3 mm								
	Рабочее давление при максимально допустимом зазоре									
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa					
	≤5	0.50 mm	0.40 mm	0.35 mm						
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm					
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm					
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm					

Код	Код Евро	Обозначение	d	D	L	В, мм	Применяемость	Цена TPU
E405	E405	MZ/L-60x70-9,0	60	70	9,0	8,5	6716п р/к ГЦ подъема прицепа 1ПТС-9; 6718п р/к ГЦ подъема прицепа ММЗ-771	
E400	E400	MZ/L-75x85-9,0	75	85	9,0	8,5	6710п, 6711п, 6712п р/к Г/ц подъёма кузова ЗИЛ- ММЗ (3-х; 4-х; 5-и шток.); 6716п р/к Г/ц подъема прицепа 1ПТС-9; 6718п р/к Г/ц подъема прицепа ММЗ-771.	
E401	E401	MZ/L-90x100-9,0	90	100	9,0	8,5	6710п, 6711п, 6712п р/к Г/ц подъёма кузова ЗИЛ- ММЗ (3-х; 4-х; 5-и шток.); 6717п р/к Г/ц подъёма кузова ЗИЛ-ММЗ (4-х шток.) (340 мм)	
E402	E402	MZ/L-105x115-9,0	105	115	9,0	8,5	6710п, 6711п, 6712п р/к Г/ц подъёма кузова ЗИЛ- ММЗ (3-х; 4-х; 5-и шток.); 6717п р/к Г/ц подъёма кузова ЗИЛ-ММЗ (4-х шток.) (340 мм)	
E403	E403	MZ/L-120x130-9,0	120	130	9,0	8,5	6711п, 6712п р/к Г/ц подъёма кузова ЗИЛ- ММЗ (4-х; 5-и шток.); 6717п р/к Г/ц подъёма кузова ЗИЛ-ММЗ (4-х шток.) (340 мм)	
E404	E404	MZ/L-137x147-9,0	137	147	9,0	8,5	6712п р/к Г/ц подъёма кузова ЗИЛ-ММЗ (5-и шток.); 6717п р/к Г/ц подъёма кузова ЗИЛ-ММЗ (4-х шток.) (340 мм)	

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ РЕМОНТНАЯ MZT

Описание

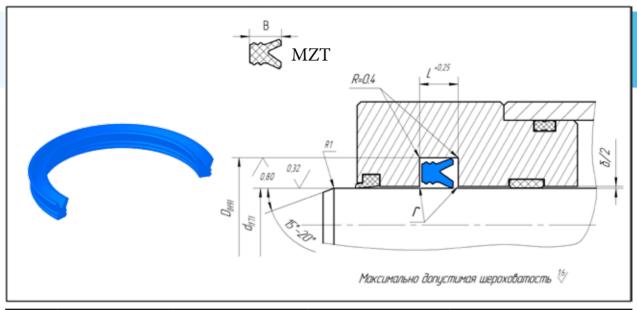
MZT - уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника.

Применяется в гидросистемах при возможности возникновения сильного осевого смещения, а также заниженных/изношенных штоках.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки
- работает при заниженных/изношенных штоках

<u>Материалы</u>

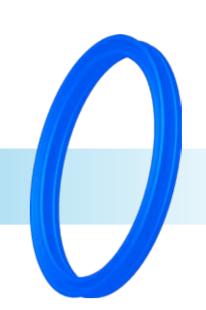

Полиуретан (TPU) "SEALAN" 93A

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА ТЕЛЕСКОПИЧЕСКАЯ РЕМОНТНАЯ МZT


	Рекомендации по допускам и размерам								
r	r удаление острых кромок r ≤0.3 mm								
	Pa	бочее давление при мак	симально допустимом за	зоре					
	размер профиля > 16 MPa > 25 MPa > 32 MPa > 40 M								

	Рабочее давление при максимально допустимом зазоре									
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa					
	≤5	0.50 mm	0.40 mm	0.35 mm						
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm					
	> 7,5 - 12,5	0.60 mm	0.50 mm	0.45 mm	0.40 mm					
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm					

Код	Код Евро	Обозначение	d	D	L	В, мм	Применяемость	Цена TPU
E406	E406	MZT-85x95-9,0	85	95	9,0	8,5	6715п р/к Г/ц подъема прицепа 2ПТС-4; 6719п р/к Г/ц подъема прицепа ПСЕ-12,5; 6720п р/к Г/ц подъема прицепа КСП; 6721п р/к Г/ц подъема прицепа ПСЕ-20.	
E407	E407	MZT-100x110-9,0	100	110	9,0	8,5	6715п р/к Г/ц подъема прицепа 2ПТС-4; 6719п р/к Г/ц подъема прицепа ПСЕ-12,5; 6720п р/к Г/ц подъема прицепа КСП; 6721п р/к Г/ц подъема прицепа ПСЕ-20; 6722п р/к Г/ц подъема кузова ГАЗ, САЗ- 3307,3507; 6723п р/к Г/ц подъема кузова ГАЗ-53.	
E408	E408	MZT-115x125-9,0	115	125	9,0	8,5	6715п р/к Г/ц подъема прицепа 2ПТС-4; 6719п р/к Г/ц подъема прицепа ПСЕ-12,5; 6720п р/к Г/ц подъема прицепа КСП; 6721п р/к Г/ц подъема прицепа ПСЕ-20.	
E409	E409	MZT-65x75-9,0	65	75	9,0	8,5	6722п р/к Г/ц подъема кузова ГАЗ, САЗ- 3307,3507	
E410	E410	MZT-82x92-9,0	82	92	9,0	8,5	6722п р/к Г/ц подъема кузова ГАЗ, САЗ-3307,3507; 6723п р/к Г/ц подъема кузова ГАЗ-53.	
E411	E411	MZT-118x128-9,0	118	128	9,0	8,5	6722п р/к Г/ц подъема кузова ГАЗ, САЗ-3307,3507; 6723п р/к Г/ц подъема кузова ГАЗ-53.	
E412	E412	MZT-136x146-9,0	136	146	9,0	8,5	6723п р/к Г/ц подъема кузова ГАЗ-53.	
E413	E413	MZT-154x164-9,0	154	164	9,0	8,5	6723п р/к Г/ц подъема кузова ГАЗ-53.	

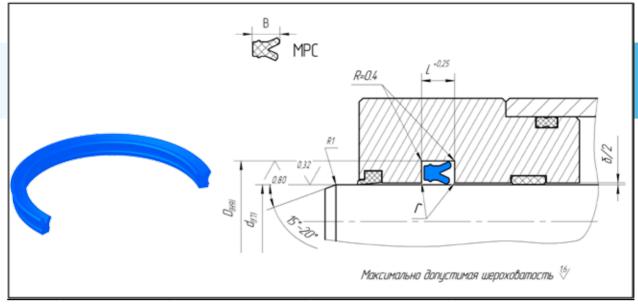
Описание

Уплотнение штока одностороннего действия, представляющее собой U-образную манжету с допольнительными уплотняющими кромками улучшающими герметизирующие характеристики, а также препятствующие попаданию загрязнений со стороны грязесъемника.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- \bullet высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки

Материалы


Полиуретан (TPU) "SEALAN" 93A

<u>Применение</u>

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА МРС

	Рекомендации по допускам и размерам							
r	удаление острых кромок r ≤0.3 mm							
	Pa	бочее давление при мак	ссимально допустимом за	зоре				
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa			
	<5	0.50 mm	0.40 mm	0.35 mm				

	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa
	≤5	0.50 mm	0.40 mm	0.35 mm	
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm
	> 7,5 - 12,5 0.60 mm		0.50 mm	0.45 mm	0.40 mm
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm
	16				

	13	0.03 11111	0.55 11111		0.43 11111		0.40 11111
Код	Код Евро	Обозначение	d	D	L	В, мм	Цена TPU
Ж401	J401	MPC-30-38,3-8.3	30	38,3	8,3	7,3	
Ж402	J402	MPC-40-48,3-8.3	40	48,3	8,3	7,3	
Ж403	J403	MPC-40-49-8.3	40	49	8,3	7,3	
Ж404	J404	MPC-50-60-10,0	50	60	10,0	7,3	
		·					

МАНЖЕТА ШТОКА МК/L

Описание

MK/L - уплотнение штока с ассиметричным профилем:

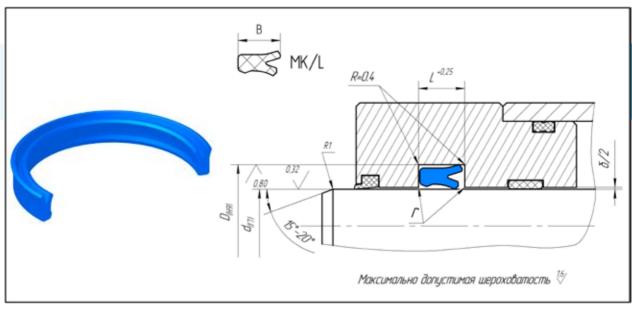
внешняя статическая кромка имеет больший размер, чем внутренняя динамическая кромка.

Применяется в гидросистемах простого действия при возможности возникновения сильного осевого смещения, а также высокого давления.

Свойства

- высокий статический и динамический уплотняющий эффект
- простой монтаж в закрытые канавки
- работает при высоком давлении
- отлично работает при низких давлениях
- высокий уплотняющий эффект с вторичной рабочей кромкой
- простая конструкция канавки

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- дорожно-строительная техника
- горное оборудование
- черная металлургия
- ножницы для резки лома
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура -35°С +110°С
- скорость скольжения до 0,5 м/с
- рабочее давление до 40 МПа
- среда минеральные масла и водно-масляные эмульсии

МАНЖЕТА ШТОКА МК/L

	Рекомендации по допускам и размерам							
	удаление острых кромок r ≤0.3 mm							
	Рабочее давление при максимально допустимом зазоре							
	размер профиля	> 16 MPa	> 25 MPa	> 32 MPa	> 40 MPa			
	≤5	0.50 mm	0.40 mm	0.35 mm				
δ	> 5 - 7,5	0.55 mm	0.45 mm	0.40 mm	0.35 mm			
	> 7,5 - 12,5 0.60 mm		0.50 mm	0.45 mm	0.40 mm			
	15	0.65 mm	0.55 mm	0.45 mm	0.40 mm			

	13	0.05 111111	0.55		0.15 11		0.10 111111
Код	Код Евро	Обозначение	d	D	L	В	Цена TPU
Л400	L400	MK/L-80-90-12.5	80	90	12.5	11.5	
Л401	L401	MK/L-100-110-12.5	100	110	12.5	11.5	
Л402	L402	MK/L-120-130-12.5	120	130	12.5	11.5	
Л403	L403	MK/L-140-150-12.5	140	150	12.5	11.5	
Л404	L404	MK/L-160-170-12.5	160	170	12.5	11.5	
			,				

МАНЖЕТА ШТОКА МК/L

Код	Код Евро	Обозначение	d	D	L	В	Цена TPU

ГРЯЗЕСЪЕМНИКИ

	_	технические характеристики			
Профиль	Тип	скорость м/с	темп. °С	Материал	Стр.
	Z50	2.0	-50+100	NBR+TPE	78
	Z 51	2.0	-50+100	NBR+TPE	80
	Z 52	2.0	-50+100	NBR+PA	82
	GW	1.0	-35+110	TPU	84
	GWL	1.0	-35+110	TPU	86
	GWK	1.0	-35+110	TPU	88
	GWR	1.0	-35+110	TPU	90
	GWS	1.0	-35+110	TPU	92
7	GWN	1.0	-35+110	TPU	94
	ANS	1.0	-35+110	TPU	96
	ANR	1.0	-35+110	TPU	98
	ANT	1.0	-35+110	TPU	100
	ANC	1.0	-35+110	TPU	102
	ANK	1.0	-35+110	TPU	104
	ANP	1.0	-35+110	TPU	106
7	типа «КАМАЗ»	0.5 1.0	-40+100 -35+110	TPU	108
	Аналог резиновых грязесъемников (РТИ)	0.5 1.0	-40+100 -35+110	TPU	110

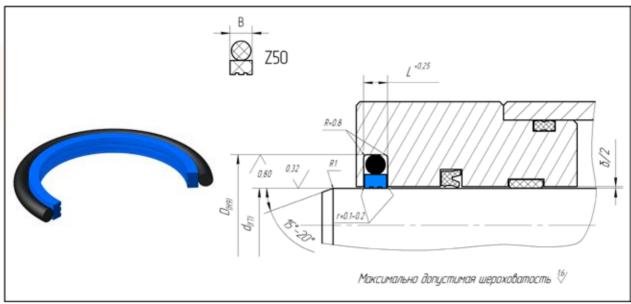
Описание

Z50 - грязесъемник двухстороннего действия. Состоит из неразъемного грязесъемного кольца специльаного профиля и поджимного резинового кольца круглого сечения R1.

Свойства

- простой монтаж в закрытые канавки
- простая конструкция канавки
- высокая скорость скольжения
- дополнительная уплотняющая способность
- долговечность, высокая износостойкость

Материалы


Уплотнительное кольцо - полиэфир (TPE) "HYTREL" 72D

Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -50°С... +100°С (Поджимное кольцо резина 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)
- \bullet скорость скольжения до 2.0 м/с
- среда минеральные масла и водно-масляные эмульсии

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ
А500сб	A500c	Z50-020	20	31	4,2	4,0	R1-020 (23.5x3.6)	
А501сб	A501c	Z50-025	25	36	4,2	4,0	R1-025 (29.5x3.6)	
А514сб	A514c	Z50-028	28	39	4,2	4,0	R1-028 (33.0x3.6)	
А515сб	A515c	Z50-030	30	41	4,2	4,0	R1-030 (34.0x3.6)	
А502сб	A502c	Z50-032	32	43	4,2	4,0	R1-032 (35.0x3.6)	
А517сб	A517c	Z50-036	36	47	4,2	4,0	R1-036 (41.0x3.6)	
А503сб	A503c	Z50-040	40	55,5	6,3	6,0	R1-040 (43.8x5.3)	
А518сб	A518c	Z50-045	45	60,5	6,3	6,0	R1-045 (50.2x5.3)	
А504сб	A504c	Z50-050	50	65,5	6,3	6,0	R1-050 (56.2x5.3)	
А519сб	A519c	Z50-055	55	70,5	6,3	6,0	R1-055 (59,7x5.3)	
А505сб	A505c	Z50-056	56	71,5	6,3	6,0	R1-056 (59.7x5.3)	
А506сб	A506c	Z50-060	60	75,5	6,3	6,0	R1-060 (66.0x5.3)	
А507сб	A507c	Z50-063	63	78,5	6,3	6,0	R1-063 (69.2x5.3)	
А508сб	A508c	Z50-070	70	85,5	6,3	6,0	R1-070 (75.6x5.3)	
А520сб	A520c	Z50-075	75	90,5	6,3	6,0	R1-075 (81.9x5.3)	
А509сб	A509c	Z50-080	80	95,5	6,3	6,0	R1-080 (85.1x5.3)	
А521сб	A521c	Z50-085	85	100,5	6,3	6,0	R1-085 (91.4x5.3)	
А510сб	A510c	Z50-090	90	105,5	6,3	6,0	R1-090 (94.2x5.3)	
А511сб	A511c	Z50-100	100	115,5	6,3	6,0	R1-100 (104.1x5.3)	
А512сб	A512c	Z50-110	110	125,5	6,3	6,0	R1-110 (116.8x5.3)	
А522сб	A522c	Z50-125	125	140,5	6,3	6,0	R1-125 (129.5x5.3)	

Описание

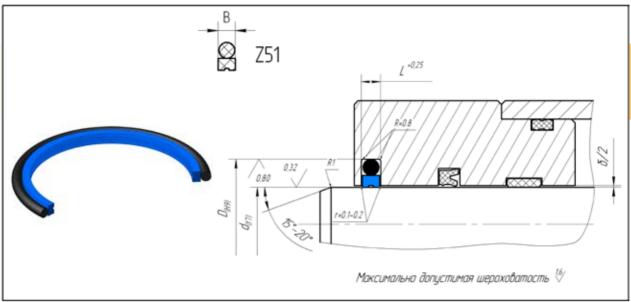
Z51 - грязесъемник двухстороннего действия. Состоит из неразъемного грязесъемного кольца специльаного профиля и поджимного резинового кольца круглого сечения R1.

Свойства

- простой монтаж в закрытые канавки
- простая конструкция канавки
- высокая скорость скольжения
- дополнительная уплотняющая способность
- долговечность, высокая износостойкость

Материалы

Уплотнительное кольцо - полиэфир (TPE) "HYTREL" 72D


Поджимное кольцо - резина масло-бензостойкая 7B-14-1

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

<u>Технические данные</u>

- температура
- -50°С... +100°С (Поджимное кольцо из 7В-14-1)
- -50°С... +100°С (Уплотнительное кольцо полиэфир "HYTREL" 72D)
- скорость скольжения до 2.0 м/с
- среда минеральные масла и водно-масляные эмульсии

Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена ТРЕ
М500сб	M500c	Z51-020	20	27,5	3,2	3,0	R1-020/1 (21.5x2.5)	
М502сб	M502c	Z51-025	25	32,5	3,2	3,0	R1-025/1 (28.5x2.5)	
М504сб	M504c	Z51-030	30	37,5	3,2	3,0	R1-030/1 (33.0x2.5)	
М505сб	M505c	Z51-032	32	39,5	3,2	3,0	R1-032/1 (35.0x2.5)	
М507сб	M507c	Z51-036	36	43,5	3,2	3,2	R1-036/1 (39.0x2.5)	
М508сб	M508c	Z51-040	40	50,7	4,2	4,0	R1-040/1 (43.0x3.6)	
М510сб	M501c	Z51-045	45	55,7	4,2	4,0	R1-045/1 (49.0x3.6)	
М511сб	M511c	Z51-050	50	60,7	4,2	4,0	R1-050/1 (53.0x3.6)	
М512сб	M512c	Z51-055	55	65,7	4,2	4,0	R1-055/1 (59.0x3.6)	
М513сб	M513c	Z51-056	56	66,7	4,2	4,0	R1-056/1 (59.0x3.6)	
М514сб	M514c	Z51-060	60	70,7	4,2	4,0	R1-060/1 (64.5x3.6)	
М515сб	M515c	Z51-063	63	73,7	4,2	4,0	R1-063/1 (66.5x3.6)	
М516сб	M516c	Z51-070	70	80,7	4,2	4,0	R1-070/1 (76.5x3.6)	
М518сб	M518c	Z51-080	80	90,7	4,2	4,0	R1-080/1 (84.5x3.6)	
М520сб	M520c	Z51-090	90	100,7	4,2	4,0	R1-090/1 (94.0x3.6)	
М522сб	M522c	Z51-100	100	110,7	4,2	4,0	R1-100/1 (104.0x3.6)	
М524сб	M524c	Z51-110	110	120,7	4,2	4,0	R1-110/1 (113.0x3.6)	

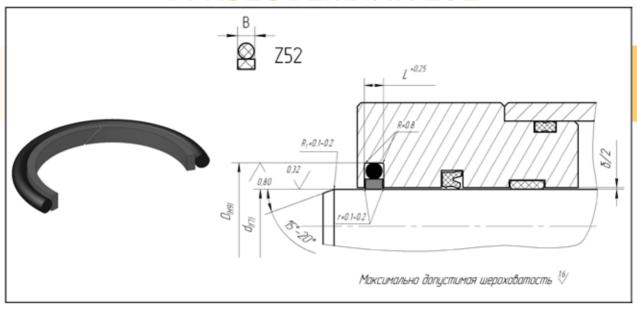
Описание

Z52 - грязесъемник двухстороннего действия. Состоит из разрезного (разрез косой) грязесъемного кольца и поджимного резинового кольца круглого сечения R1.

Свойства

- прежназначен для работы в слабо загрязненных средах, снятия наледи и крупных частиц грязи
- простой монтаж в закрытые канавки
- простая конструкция канавки
- высокая скорость скольжения
- долговечность, высокая износостойкость
- высокие способности удаления ледовой корки

Материалы

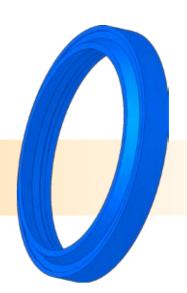

Уплотнительное кольцо - полиамид (РА) +стекловолокно Поджимное кольцо - резина масло-бензостойкая 7В-14-1

Применение

- в условиях крайнего севера
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

<u>Технические данные</u>

- температура
- -50°С... +100°С (Поджимное кольцо -резина 7В-14-1)
- -50°С... +100°С Уплотнительное кольцо (Полиамид (РА)+стекловолокно)
- \bullet скорость скольжения до 2,0 м/с
- среда минеральные масла и водно-масляные эмульсии



Код	Код Евро	Обозначение	d	D	L	В, мм	Кольцо поджимное круглого сечения	Цена РА
Б500сб	B500c	Z52-025	25	35,7	4,2	4,0	R1-025 (29.5x3.6)	
Б501сб	B501c	Z52-040	40	54,1	6,3	6,0	R1-040 (43.8x5.3)	
Б502сб	B502c	Z52-045	45	59,1	6,3	6,0	R1-045 (50.2x5.3)	
Б503сб	B503c	Z52-050	50	64,1	6,3	6,0	R1-050 (56.2x5.3)	
Б504сб	B504c	Z52-056	56	70,1	6,3	6,0	R1-056 (59.7x5.3)	
Б506сб	B506c	Z52-063	63	77,1	6,3	6,0	R1-063 (69.2x5.3)	
Б507сб	B507c	Z52-070	70	84,1	6,3	6,0	R1-070 (75.6x5.3)	
Б514сб	B514c	Z52-075	75	89,1	6,3	6,0	R1-075 (81.9x5.3)	
Б508сб	B508c	Z52-080	80	94,1	6,3	6,0	R1-080 (85.1x5.3)	
Б513сб	B513c	Z52-085	85	99,1	6,3	6,0	R1-085 (91.4x5.3)	
Б509сб	B509c	Z52-090	90	104,1	6,3	6,0	R1-090 (94.2x5.3)	
Б510сб	B510c	Z52-100	100	114,1	6,3	6,0	R1-100 (104.1x5.3)	
Б512сб	B512c	Z52-125	125	140,1	6,3	6,0	R1-125 (129.1x5.3)	
					,			

ГРЯЗЕСЪЕМНИК GW

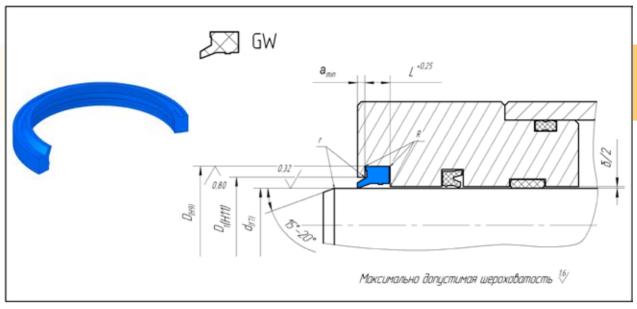
Описание

GW - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические системы, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- широкий диапазон размеров
- простая, удобная конструкция канавки
- высокая скорость скольжения
- долговечность, высокая износостойкость
- высокие способности удаления ледовой корки

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GW

	Рекомендации по допускам и размерам							
R			Rs	≤ 0.5 mm				
r		удал	ение остры	ых кромок	r ≤0.3 mm			
		·	1	•				
Код	Код Евро	Обозначение	d	D	D1	L	а	Цена TPU
B501	V501	GW-025	25	33,6	28	5,3	2	
B545	V545	GW-025.4	25,4	34,93	28,4	4,76	2	
B503	V503	GW-030	30	38,6	33	5,3	2	
B546	V546	GW-031.75	31,75	41,27	34,75	4,76	2	
B504	V504	GW-032	32	40,6	35	5,3	2	
B547	V547	GW-038.1	38,1	47,62	41,1	4,76	2	
B507	V507	GW-040	40	48,6	43	5,3	2	
B548	V548	GW-044.45	44,45	53,98	47,45	4,76	2	
B508	V508	GW-045	45	53,6	48	5,3	2	
B544	V544	GW-048	48	56,6	51	5,3	2	
B510	V510	GW-050	50	58,6	53	5,3	2	
B512	V512	GW-055	55	63,6	58	5,3	2	
B514	V514	GW-056	56	64,6	59	5,3	2	
B515	V515	GW/1-056	56	66,6	59	5,3	2	
B516	V516	GW-060	60	68,6	63	5,3	2	
B517	V517	GW/1-060	60	70,6	63	5,3	2	
B518	V518	GW-063	63	71,6	66	5,3	2	
B522	V522	GW-070	70	78,6	73	5,3	2	
B525	V525	GW-075	75	83,6	78	5,3	2	
B526	V526	GW-075M	75	87,2	81	7,1	3	
B527	V527	GW-080	80	88,6	83	5,3	2	
B533	V533	GW-090	90	98,6	93	5,3	2	
B534	V534	GW-090M	90	102,2	96	7,1	3	
B540	V540	GW-095	95	103,6	98	5,3	2	
B535	V535	GW-095M	95	107,2	101	7,1	3	
B536	V536	GW-100	100	108,6	103	5,3	2	
B537	V537	GW-100M	100	112,2	106	7,1	3	
B539	V539	GW-110M	110	122,2	116	7,1	3	

ГРЯЗЕСЪЕМНИК GWL

Описание

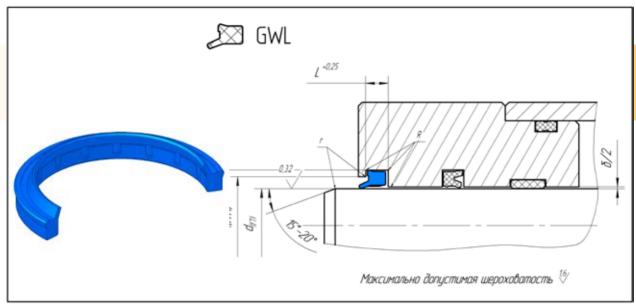
GWL - грязесъемник одностороннего действия имеет высокоэластичную очищающую кромку на динамической стороне и более короткую и жесткую выступающую кромку на статической стороне.

Такой вариант профиля обеспечивает надежную очистку штока от загрязнений, побочных частиц и воды, одновременно предотвращая их проникновение и со статической стороны. При отсутствии грязесъемника попадание посторонних частиц приводит к повреждению уплотнения штока, а также прочих внутренних деталей цилиндра.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость
- специальная конструкция препятствует попаданию больших частиц в систему
- применяется в тяжелых условиях работы

Материалы


Полиуретан (TPU) "SEALAN" 93A

<u>Применение</u>

• для телескопических гидроцилиндров в комплекте с опорно-направляющими кольцами штока S6

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GWL

	Рекомендации по допускам и размерам
R	R ≤ 0.5 mm
r	удаление острых кромок r ≤0.3 mm

Код	Код Евро	Обозначение	d	D	D1	L	Цена TPU
Л500	L500	GWL-080	80	88.6	83	5.3	
Л501	L501	GWL-100	100	108.6	103	5.3	
Л502	L502	GWL-120	120	128.6	123	5.3	
Л503	L503	GWL-140	140	148.6	143	5.3	
Л504	L504	GWL-160	160	168.6	163	5.3	

ГРЯЗЕСЪЕМНИК GWK

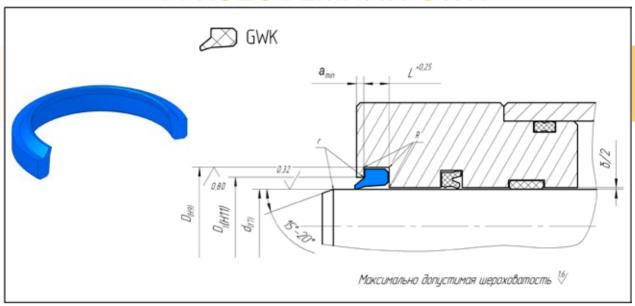
Описание

GWK - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- широкий диапазон размеров
- простая, удобная конструкция канавки
- высокая скорость скольжения
- долговечность, высокая износостойкость
- высокие способности удаления ледовой корки

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GWK

Рекомендации по допускам и размерам

 $R \leq 0.5 \ mm$

r		удале	ние остры	х кромок г	≤0.3 mm			
Код	Код Евро	Обозначение	d	D	L	D1	а	Цена TPU
C500	S500	GWK-056	56	66	6.5	61.5	3	
C501	S501	GWK-075	75	85	6.5	80.5	3	
C502	S502	GWK-095	95	105	6.5	100.5	3	
				,		,		
				,	1	,	1	

R

ГРЯЗЕСЪЕМНИК GWR

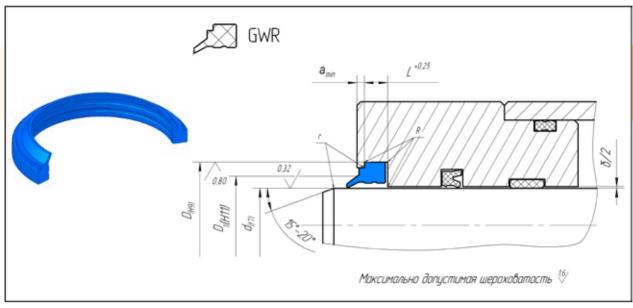
Описание

GWR - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- широкий диапазон размеров
- не скручивается в корпусе
- простая, удобная конструкция канавки
- высокая скорость скольжения
- долговечность, высокая износостойкость
- высокие способности удаления ледовой корки

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GWR

	Рекомендации по допускам и размерам						
R	R ≤ 0.5 mm						
r	удаление острых кромок r ≤0.3 mm						

	Евро	Обозначение	d	D	L	D1	а	Цена TPU
Г501	G501	GWR-020	20	28	4	26	1,5	
Г502	G502	GWR-025	25	33	4	31	1,5	
Г504	G504	GWR-030	30	38	4	36	1,5	
Г505	G505	GWR-032	32	40	4	38	1,5	
Г521	G521	GWR-035	35	43	4	41	1,5	
Г506	G506	GWR-036	36	44	4	42	1,5	
Г507	G507	GWR-040	40	48	4	46	1,5	
Г508	G508	GWR-050	50	58	4	56	1,5	
Г509	G509	GWR-055	55	63	4	61	1,5	
Γ511	G511	GWR-060	60	68	4	66	1,5	
Г512	G512	GWR-063	63	71	4	69	1,5	
Г516	G516	GWR-080	80	88	4	86	1,5	

ГРЯЗЕСЪЕМНИК GWS

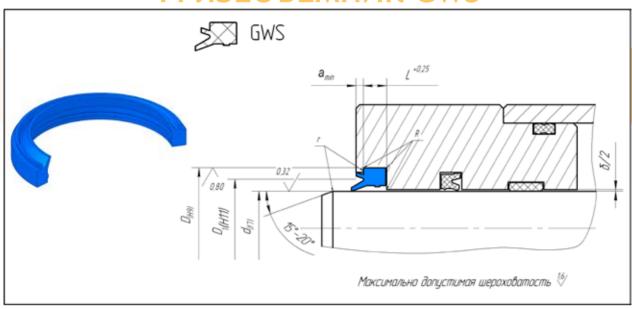
Описание

GWS - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- улучшенный эффект стирания грязи, водяной пыли, и т.д. с помощью вторичной уплотнительной кромки на внешнем диаметре
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость
- специальная конструкция препятствует попаданию больших частиц в систему
- применяется в тяжелых условиях работы

Материалы


Полиуретан (TPU) "SEALAN" 93A

<u>Применение</u>

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- горное оборудование

- температура -35°С... +110°С
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GWS

		Рекомендации	по лопускам	и и размерам	<u></u>					
R			R ≤ 0.5 r							
r		удаление острых кромок r ≤0.3 mm								
Код	Код Евро	Обозначение	d	D	D1	L	Цена TPU			
Д507	D507	GWS-030	30	38	36	4				
Д513	D513	GWS-040	40	48	46	4				
Д530	D530	GWS-075	75	83	81	4				
Д542	D542	GWS-095	95	103	101	4				
Д532	D532	GWS/3-080	80	90	87	6,3				
Д536	D536	GWS/3-090	90	100	97	6,3	,			

ГРЯЗЕСЪЕМНИК GWN

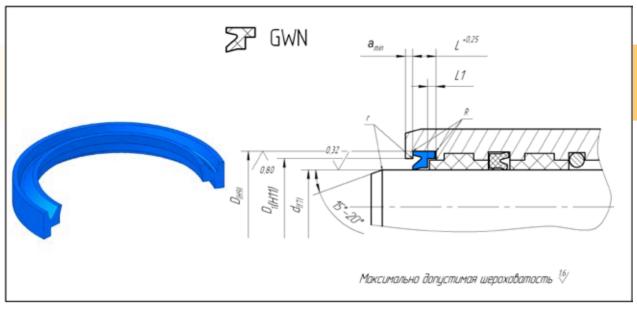
Описание

GWN - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость
- специальная конструкция препятствует попаданию больших частиц в систему
- применяется в тяжелых условиях работы

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

• для телескопических гидроцилиндров в комплекте с опорно-направляющими кольцами штока S6

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК GWN

	Рекомендации по допускам и размерам								
R	$R \le 0.5 \text{ mm}$								
r	удаление острых кромок r ≤0.3 mm								

Код	Код Евро	Обозначение	d	D	D1	L	L1	Цена TPU
Д400	D400	GWN-055	55	64	60	6,2	2,0	
Д401	D401	GWN-075	75	84	80	6,2	2,0	
Д402	D402	GWN-095	95	104	100	6,2	2,0	

ГРЯЗЕСЪЕМНИК ANS

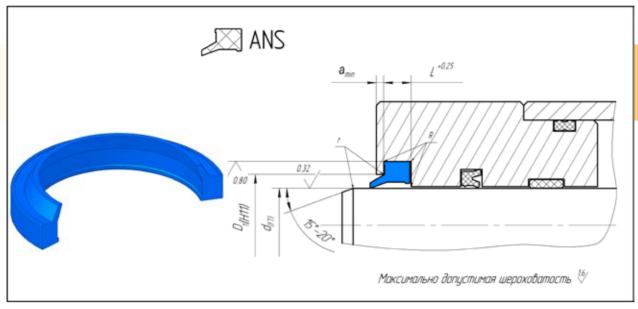
Описание

ANS - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК ANS

	Рекомендации по допускам и размерам
R	R ≤ 0.5 mm
r	удаление острых кромок r ≤0.3 mm

Код	Код Евро	Обозначение	d	D	D1	L	Цена TPU
K525	K525	ANS-022	22	30	27,5	5	
K501	K501	ANS-025	25	33	30,5	5	
K503	K503	ANS-032	32	40	37,5	5	
K505	K505	ANS-040	40	48	45,5	5	
K506	K506	ANS-045	45	53	50,5	5	
K507	K507	ANS-050	50	58	55,5	5	
K508	K508	ANS-056	56	66	63	6,3	
K509	K509	ANS-063	63	73	70	6,3	
K510	K510	ANS-070	70	80	77	6,3	
K512	K512	ANS-080	80	90	87	6,3	

ГРЯЗЕСЪЕМНИК ANR

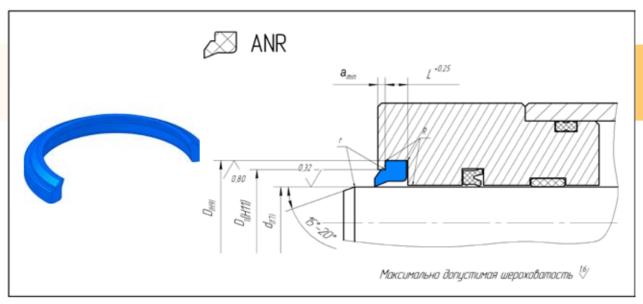
Описание

ANR - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость

Материалы

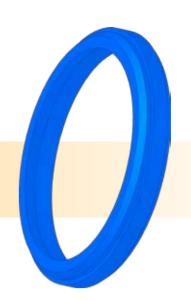

Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- телескопические цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК ANR



		Рекоменда	тии по поп	ускам и ра	змерам			
R		Текоменда		yekam n pa ≤ 0.5 mm	эмерим			
r	удаление острых кромок r ≤0.3 mm							
Код	Код Евро	Обозначение	d	D	D1	L	a _{min}	Цена TPU
H500	N500	ANR-056	56	64	60	4.2	2	
H501	N501	ANR-075	75	83	79	4.2	2	
H502	N502	ANR-095	95	103	99	4.2	2	
H503	N503	ANR-115	115	123	119	4.2	2	

ГРЯЗЕСЪЕМНИК ANT

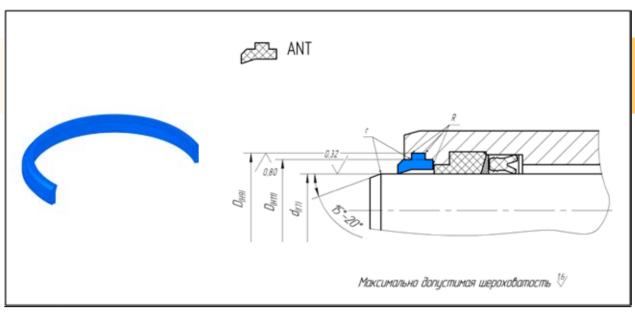
Описание

ANT - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- телескопические цилиндры

- температура
- -35°C... +110°C
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК ANT

	Рекомендации по допускам и размерам					
R	$R \le 0.5 \text{ mm}$					
r	удаление острых кромок r ≤0.3 mm					

Код	Код Евро	Обозначение	d	D	D1	L	a min	Цена TPU
P500	R500	ANT-117	117	129	124	5.2	5	
P501	R501	ANT-142	142	154	149	5.2	5	
_						<u> </u>		

ГРЯЗЕСЪЕМНИК ANC

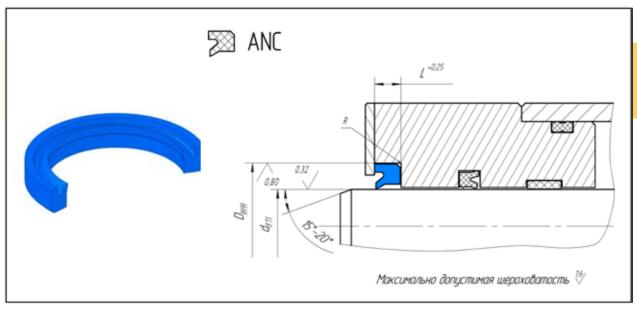
Описание

ANC - грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость

Материалы

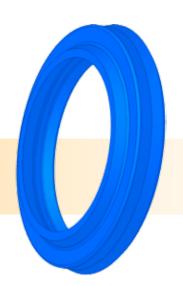

Полиуретан (TPU) "SEALAN" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- телескопические цилиндры

- температура -35°С... +110°С
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК АНС


Рекомендации по допускам и размерам					
R	R ≤ 0.5 mm				
r	удаление острых кромок r ≤0.3 mm				

Код	Код Евро	Обозначение	d	D	L	Цена TPU
Д200	D200	ANC-030	30	42	5.7	
Д201	D201	ANC-040	40	56	6.5	
			,			

ГРЯЗЕСЪЕМНИК ANK

Описание

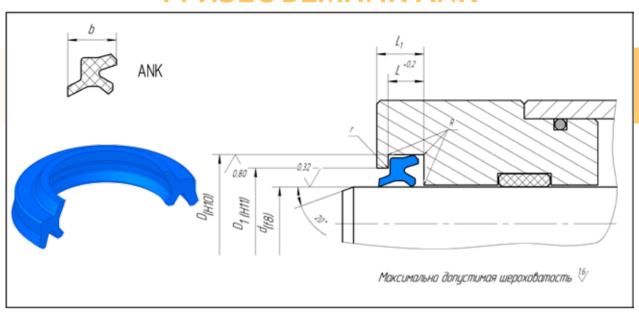
ANK – маслогрязесъёмник двунаправленного действия. Изнутри работает как манжета, обеспечивая дополнительную защиту от утечки рабочей жидкости и остатках масляной пленки на выходящем штоке, а снаружи выполняет функцию грязесъёмника, предотвращая попадание загрязнений в цилиндр.

Свойства

- компактность
- хорошая защита от загрязнений
- хорошее уплотняющее действие от остаточной масляной пленки на выходящем штоке
- дополнительная защита от утечек рабочей жидкости

<u>Материалы</u>

Полиуретан (TPU) "SEALAN" 93A


Применение

- сельскохозяйственная техника
- строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

<u>Технические данные</u>

- температура -35°С... +110°С
- скорость скольжения до 1.0 м/с
- рабочее давление ≤1,6 Мпа
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК АNK

Обозначение	d	D	D1	L	L1	h	R
Обозначение	d	D	DI	L	LI	b	K
ANK-025	25	31	27.5	3.9	5.9	4.5	0.5
ANK-030	30	38.6	33	5.3	7.3	7	1
ANK-040	40	48.6	43	5.3	7.3	7	1
ANK-050	50	58.6	53	5.3	7.3	7	1
ANK-060	60	70.6	63	5.3	7.3	7	1
ANK-065	65	75.6	68	5.3	7.3	7	1
		,					

ГРЯЗЕСЪЕМНИК АНР

Описание

ANP – грязесъёмник одностороннего действия, который препятствует попаданию инородных частиц в гидравлическую систему, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения. Представляет собой упругое полиуретановое грязезащитное кольцо которое установлено в прочную обойму из полиацеталя.

Свойства

- компактность
- удобная открытая конструкция канавки
- может применяться в тяжелых условиях работы
- хорошая защита от загрязнений
- надежная посадка, запрессовка в корпус

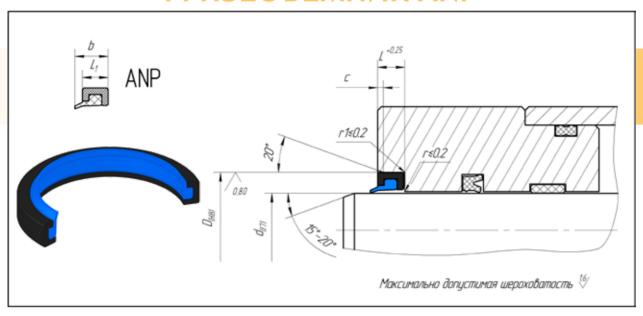
Материалы

Грязезащитное кольцо - полиуретан (TPU) 'SEALAN' 93A

Обойма - полиацеталь (РОМ)

Применение

- Сельскохозяйственная техника
- Строительная техника
- Грузоподъёмные машины
- Промышленное оборудование
- Стандартные цилиндры


Технические данные

- температура -35°...+110°С
- скорость скольжения до 1,0 м/с
- среда минеральные масла и водно-масляные эмульсии

<u>Установка</u>

Грязесъёмник запрессовывается в открытую канавку. При монтаже необходимо использовать специальное оборудование. Перед установкой грязесъёмник необходимо смазать маслом системы. Монтажные инструменты должны быть из мягкого материала и не иметь острых краёв.

ГРЯЗЕСЪЕМНИК АНР

Обозначение	d	D	L/L ₁	b	С
ANP-045	45	55	7.0	9.0	1.4
ANP-050	50	60	7.0	9.0	1.4

ГРЯЗЕСЪЕМНИК ТИПА «КАМАЗ»

Описание

Грязесъемник одностороннего действия, который препятствует попаданию инородных частиц в гидравлические цилиндры, предотвращая износ и повреждение всех внутренних компонентов, включая уплотнения.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- простая, удобная конструкция канавки
- долговечность, высокая износостойкость

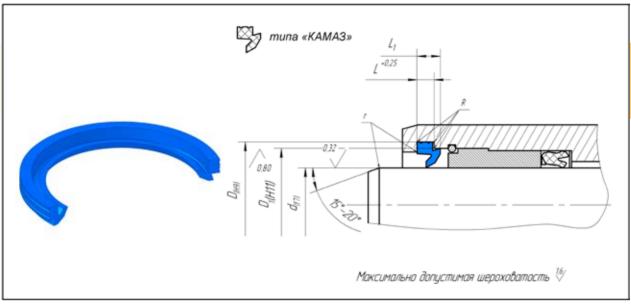
<u>Материалы</u>

Исполнение 1: Полиуретан (TPU) "Desythane" 85A Исполнение 2: Полиуретан (TPU) "Sealan" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- телескопические цилиндры

Технические данные


Исполнение 1:

- температура -40°С... +100°С
- скорость скольжения до 0.5 м/с
- среда минеральные масла и водно-масляные эмульсии

Исполнение 2:

- температура -35°С... +110°С
- скорость скольжения до 1.0 м/с
- среда минеральные масла и водно-масляные эмульсии

ГРЯЗЕСЪЕМНИК ТИПА «КАМАЗ»

		Рекомендации по ;			ам			
R			$R \le 0.5 \text{ n}$					
r		удаление ос	трых кро	мок r ≤0	3 mm			
Код	Код Евро	Обозначение	d	D	D1	L	L1	Цена TPU
A900	A900E	12.8603404-24	56	71	67	6.5	9.5	
A901	A901E	13.8603404-24	75	91	87	6.5	9.5	
A902	A902E	14.8603404-24	95	113	108	6.5	9.5	
A903	A903E	15.8603404-24	117	137	131	6.5	11.5	
A904	A904E	16.8603404-24	142	163	157	6.5	11.5	
A905	A905E	17.8603404-24	170	190	185	6.5	11.5	
						,		

Описание

Грязесъемник одностороннего действия для защиты гидроцилиндра от грязи.

Свойства

- простой монтаж в закрытые канавки
- не скручивается в корпусе
- долговечность, высокая износостойкость

<u>Материалы</u>

Исполнение 1:

Полиуретан (TPU) "Desythane" 85A

Исполнение 2:

Полиуретан (TPU) "Sealan" 93A

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- телескопические цилиндры

Технические данные

Исполнение 1:

- температура -40°С... +100°С
- скорость скольжения до 0.5 м/с
- среда минеральные масла и водно-масляные эмульсии

Исполнение 2:

- температура -35°С... +110°С
- скорость скольжения до 0.5 м/с
- среда минеральные масла и водно-масляные эмульсии

Код, Код Евро	Обозначение	d	D	н	H1	Схема	Применяемость	Цена TPU
T500	Ц80х200.037	40	55	9	10,3	H ₁ H	404п р/к ГЦ ЦС-80; 406п р/к ГЦ ЦС-100; 486п р/к ГЦ поворота (шток 40) Т-151К	
T501	700.46.12.023 (70*50)	50	70	8	10,5	H _t H	408п р/к ГЦ ЦС-125 (поворота) К-701; 412п р/к ГЦ ЦС-125 (основной) Т-151К; 413п р/к ГЦ ЦС-125 МТЗ-80А; 414п р/к ГЦ ЦС-125 (задней навески) Т-170; 424п р/к ГЦ ЦС-125 (поворота) К-703; 479п р/к ГЦ ЦС-125 МТЗ-1221; 419п р/к ГЦ ЦС-140 (подъема) К-700; 473п р/к ГЦ подъема отвала ТЛТ-100; 474п р/к ГЦ подъема плиты ТЛТ-100; 447п р/к ГЦ подъема плиты ТДТ-55А; 448п р/к ГЦ подъема плиты ТДТ-55А; 471п р/к ГЦ подъема плиты ТТ-4М; 472п р/к ГЦ подъема плиты ТТ-4М;	
T502	700A.34.29.014	55	68	7	-	H P	408п р/к ГЦ ЦС-125 (поворота) К-701; 424п р/к ГЦ ЦС-125 (поворота) К-703; 488п р/к Уплотнений подшипника ЦС-125 К-701/Т-150	
T503	Э 135-1400-14	55	80	6,7	12,7	H ₁	ЭО-2621A; ЭО-2621B2; ПБ-35; ПЭ-0,8Б; ЭО-4121; ЭО-2202; ДТ-75; БДВП-4,2	
T504	2256010- 3429016 (80*60)	63	82	8	10,5	H ₁ H	409п р/к ГЦ ЦС-125 (силовой) К-701; 433п р/к ГЦ ЦС-125 (поворта) К-702	
T505	HO 518	40	60	5	10	H ₁ H	ПФ-0,75; ПГ-0,2; Д3-122; БДТ-7; КУН-0,8; КУН-10; ПБ-35; СПФ-01.010; ПС-0,5; ПС-0,8; ПЭ-0,8; ПКУ-0,8.	

Код, Код Евро	Обозначение	d	D	Н	H1	Схема	Применяемость Цена ТРU
T506c6	3-50-4 FOCT 24811-81	50	61	7	-	H P	410п р/к ГЦ ЦС-125 (основной)Т-150К; 497п р/к ГЦ ЦС-125(задней навески) Т-130; 9O-2621B2; ДЗ-122; ТО-49 "АМКОДОР".
T507	711-8603141-01	60	70	7	12	H,	502п; 6716п р/к ГЦ подъема прицепа 1ПТС-9;
T508	711-8603141-05	75	85	7	12	0	509п; 6718п р/к ГЦ подъема прицепа MM3-771
T509	887-8603162-10	85	95	6,5	7,5	H ₁	501п; 6715п р/к ГЦ подъема прицепа 2ПТС-4;
T510	887A-8603142- 10	100	110	6,5	7,5		504п; 6719п р/к ГЦ подъема прицепа ПСЕ-12,5; 506п;
T511	887A-8603126- 10	115	125	6,5	7,5	0	6720п р/к ГЦ подъема прицепа КСП; 6721п р/к ГЦ подъема прицепа ПСЕ-20
T514	Ц 21.004	80	88	3,8	7	<i>H</i> ₁	602п р/к ГЦ подъема кузова MA3-503A/5549; 621п р/к ГЦ подъема кузова
T512	503A-8603547	100	108	3,8	7		MA3-5516; KC-3575A; KC-3577; KC-3571;
T513	503A-8603548	120	128	3,8	7	P	KC-3575A; KC-4572A; KC-4574
T515	941-2919026-10	57	90	5,5	10	H, H	621п р/к ГЦ подъема кузова МАЗ-5516
Б900	 Вштока 75	75	85	7	10	H ₁	605п р/к ГЦ подъема кузова ЗИЛ-ММЗ (3-х шт.)
Б901	 Вштока 90	90	100	7	10	Н	606п р/́к ГЦ подъема кузова ЗИЛ-ММЗ (4-х шт.);
Б902	Дштока 105	105	115	7	10	1	607п р/к ГЦ подъема кузова ЗИЛ-ММЗ———————————————————————————————————
Б903	 Вштока 120	120	130	7	10		(3-х шт.) (ремонт); 6711п р/к ГЦ подъема кузова ЗИЛ-ММЗ (4-х шт.) (ремонт);
Б911	Дштока 137	137	147	7	10	0	6712п р/к ГЦ подъема кузова ЗИЛ-ММЗ (5-и шт.) (ремонт);
Б904	Дштока 140	140	150	7	10	P	6717п р/к ГЦ подъема кузова ЗИЛ-ММЗ (4-х шт.) (ремонт) (340 мм)

Код, Код Евро	Обозначение	d	D	Н	H1	Схема	Применяемость Цена ТРU
Б906	D штока 65	65	75	5	8	H ₁	
Б905	D штока 82	82	92	5	8	H -	601п р/к ГЦ подъема кузова ГАЗ, САЗ- 3307, САЗ-3507;
Б907	Дштока 100	100	110	5	8		608п р/к ГЦ подъема кузова ГАЗ-53; 888п р/к ГЦ подъема погрузчика №2
Б908	Дштока 118	118	128	5	8	1	4043/4045
Б909	Д штока 133	133	143	5	8		893п р/к ГЦ подъем погрузчика №2———— 4014/4081;
Б912	Дштока 136	136	146	5	8		6722п р/к ГЦ подъема кузова (ремонт) ГАЗ,САЗ-3307, САЗ-3507;
Б910	Дштока 150	150	160	5	8	0	6723п р/к ГЦ подъема кузова (ремонт) ГАЗ-53
Б913	Дштока 154	154	164	5	8		
T516	785A-1	72	81	6	10	H	512п р/к ГЦ подъема прицепа
T517	785A-2	90	99	6	10	0	2ΠTC-4M
T518	Ц 51.004	170	160	5	10	H ₁ H	2310п р/к ГЦ подъема стрелы КС-4572А ((Ц4572.63.400-1); 2312п р/к ГЦ подъем стрелы КС-3575А (ЗИЛ); 2314п р/к ГЦ подъем стрелы КС-3577 (Ивановец).

Код, Код Евро	Обозначение	d	D	Н	H1	Схема	Применяемость	Цена TPU

СТАТИЧЕСКИЕ УПЛОТНЕНИЯ

	СТАТИЧЕСКИЕ УПЛОТНЕНИЯ										
Профиль	Тип	технические х	арактеристики	Материал	Стр.						
Профиль	17111	скорость. м/с	темп. °С	Материал	Oip.						
	GRS	-	-35+110	TPU	116						
	GSK	-	-35+110	TPU	120						
	OR	-	-35+110	TPU	122						

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GRS

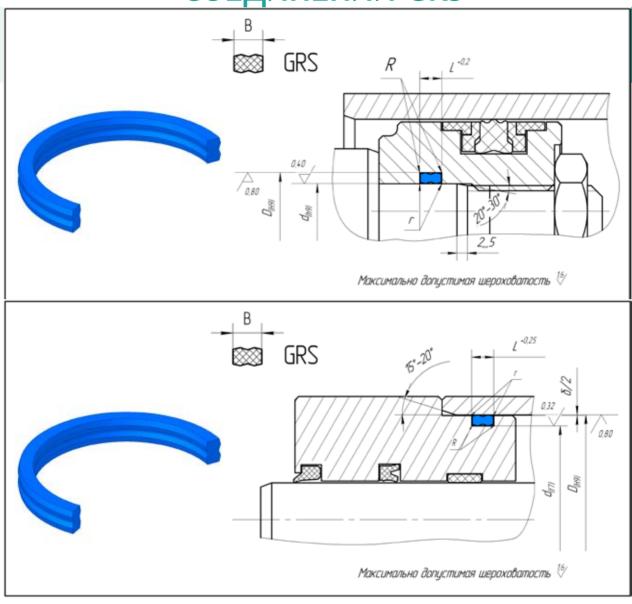
Описание

GRS - уплотнение крышки двустороннего действия, специально предназначенное для статических устройств.

Свойства

- высокое рабочее давление
- высокая надежность
- эквивалентно уплотнительному кольцу и уплотнительному кольцу с кольцом защитным
- легко и надежно монтируется
- конструкция уплотнения исключает скручивание при монтаже
- высокая устойчивость к истиранию
- не требует установки кольца защитного

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

• все виды статических гидравлических соединений

- давление до 50 МПа
- температура
- -35°C... +110°C
- среда минеральные масла и водно-масляные эмульсии

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GRS

	Рекомендации по допускам и размерам									
R	0mm < d ≤ 20m	m 20 mm $< d \le 50$ mm	50mm < d ≤ 100mm			d ≥ 100mm				
K	max 0.50 mm	max 0.80 mm	max 1.0 mm			max 1.5 mn	1			
r	удаление острых кромок r ≤0.3 mm									
	Рабочее давление при максимально допустимом зазоре									
•	10 MPa	> 16 MPa	> 25	> 25 MPa		> 40 MPa				
δ	0.5 mm	0.40 mm	0.25 mm			0.18 mm				
Код	Код Евро	Обозначение	D	d	L	В	Цена ТРU			
K713	К713	GRS-040	40	35,2	5,4	4,6	11 0			
K714	K714	GRS-050	50	43,8	5,6	5,3				
K715	K715	GRS-060	60	53,6	5,6	5,3				
K716	K716	GRS-063	63	56,6	6,4	5,5				

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GRS

Код	Код Евро	Обозначение	D	d	L	В	Цена TPU
K717	K717	GRS-075	75	65,8	9,7	8,2	
K700	K700	GRS-080	80	70,8	8,6	8,2	
K706	K706	GRS-080M	80	73,8	6,9	6,4	
K701	K701	GRS-100	100	90,8	8,6	8,2	
K707	K707	GRS-100M	100	93,8	6,9	6,4	
K702	K702	GRS-110	110	100,8	8,6	8,2	
К708	K708	GRS-110M	110	103,8	6,9	6,4	
K703	K703	GRS-125	125	115,8	8,6	8,2	
К709	K709	GRS-125M	125	118,8	6,9	6,4	
К704	K704	GRS-140	140	131,6	8,6	8,2	
K705	K705	GRS-160	160	150,8	9,7	9,0	
					,		

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GRS

Код	Код Евро	Обозначение	D	d	L	В	Цена TPU

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GSK

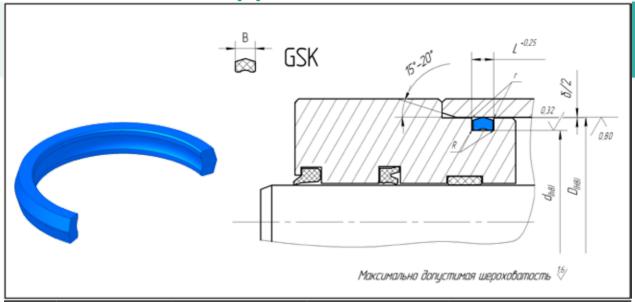
Описание

GSK - уплотнение крышки двустороннего действия, специально предназначенное для статических устройств.

Свойства

- высокое рабочее давление
- высокая надежность
- эквивалентно уплотнительному кольцу и уплотнительному кольцу с кольцом защитным
- легко и надежно монтируется
- конструкция уплотнения исключает скручивание при монтаже
- высокая устойчивость к истиранию
- не требует установки кольца защитного

Материалы


Полиуретан (TPU) "SEALAN" 93A

Применение

• все виды статических гидравлических соединений

- давление до 50 МПа
- температура
- -35°C... +110°C
- среда минеральные масла и водно-масляные эмульсии

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ GSK

	Рекомендации по допускам и размерам									
R	0 mm $< d \le 20$ mm	20mm < d ≤ 50mm 50mm < d ≤ 100m		d ≥ 100mm						
	max 0.50 mm	max 0.80 mm	max 1.0 mm	max 1.5 mm						
r	удаление острых кромок r ≤0.3 mm									
	Pa	бочее давление при мак	симально допустимом за	зоре						
δ	10 MPa	> 16 MPa	> 25 MPa	> 40 MPa						
	0.5 mm	0.40 mm	0.25 mm	0.18 mm						

Код	Код Евро	Обозначение	D	d	L	В	Цена TPU
K801	K801	GSK-050	50	44,4	6,2	5,3	
К803	K803	GSK-063/1	63	57,5	4,5	3,9	
К804	K804	GSK-071	71	65,5	4,5	3,9	
K805	K805	GSK-080/1	80	74,5	4,5	3,9	
К800	K800	GSK-100/2	100	93,7	5,2	4,49	
К806	K806	GSK-110/1	110	103,7	5,2	4,49	
K807	K807	GSK-125	125	116,4	9	7,8	

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ OR

Описание

OR – уплотнительное кольцо круглого сечения имеет широкую область применения. По сравнению с другими уплотнительными элементами, уплотнительные кольца более компактны, могут обеспечивать двухстороннее уплотнение, что дает возможность облегчить конструкции.

Свойства

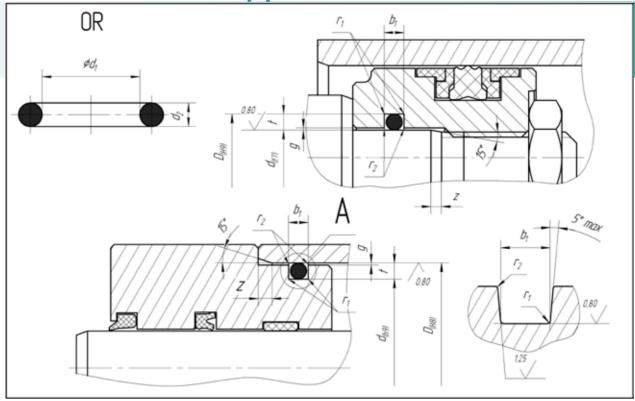
- компактность
- простая конструкция канавки
- высокая износоустойчивость

Материалы

Полиуретан (TPU) "SEALAN" 93A

Применение

- Сельскохозяйственная техника
- Строительная техника
- Грузоподъёмные машины
- Стандартные цилиндры


Технические данные

- температура -35°...+110°С
- среда минеральные масла и водно-масляные эмульсии

Примечание

При установке в канавку кольцо OR не должно быть перекрученным или растянутым.
Поверхности соединений, которые соприкасаются с уплотнительным кольцом OR должны, быть очищены от заусенцев и следов обработки, а переходы тщательно закруглены.

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ OR

Рекомендации по допускам и размерам								
b_1		$r_2^{}$						
<3	0.1		0.25					
≥3	0.2		0.50					
	ирина зазоров для неподвиж	хных соединений*						
Рабочее давление, МПа	16	21	25					
Ширина зазора g, мм	0,20	0,15	0,10					

^{*}При использовании защитных колец противовыдавливания при рабочих давлениях до 40 Мпа могут перекрываться зазоры до 0,3 мм.

Обозначение	d1	d2	Ширина уплотняющей поверхности t	Ширина канавки b1 +0,2	Фаска 15° z
OR 25x2,5	25	2,5	1,9±0,10	3,4	3,0
OR 30x2,0	30	2,0	1,5±0,08	2,8	2,6
OR 40x2,0	40	2,0	1,5±0,08	2,8	2,6
OR 44x3,0	44	3,0	2,3±0,12	4,1	3,5
OR 50x3,0	50) 3,0 2,3±0,12		4,1	3,5
OR 54x3,0	54	3,0	2,3±0,12	4,1	3,5
OR 60x5,0	60	5,0	3,9±0,20	6,60	5,4
OR 64x3,0	64	3,0	2,3±0,12	4,1	3,5
OR 65x5,0	65	5,0	3,9±0,20	6,60	5,4
OR 70x5,0	70	5,0	3,9±0,20	6,60	5,4
OR 80x5,0	80	5,0	3,9±0,20	6,60	5,4
OR 90x5,0	90	5,0	3,9±0,20	6,60	5,4

УПЛОТНЕНИЕ СТАТИЧЕСКИХ СОЕДИНЕНИЙ OR

Обозначение	d1	d2	Ширина уплотняющей поверхности t	Ширина канавки b1 +0,2	Фаска 15° z
OR 100x5,0	100	5,0	3,9±0,20	6,60	5,4
OR 110x5,0	110	5,0	3,9±0,20	6,60	5,4
OR 115x5,0	115	5,0	3,9±0,20	6,60	5,4

НАПРАВЛЯЮЩИЕ ЭЛЕМЕНТЫ

	КОЛЬЦА ОПОРНО-НАПРАВЛЯЮЩИЕ								
	T	технические х	арактеристики		0-11				
Профиль	Тип	скорость м/с	темп. °С	Материал	Стр.				
	S24	2	-60+130	РА+стекловолокно	126				
	S1	2	-60+130	РА+стекловолокно	128				
	S3	2	-60+130	РА+стекловолокно	130				
	S8	2	-60+130	РА+стекловолокно	132				
	S	2	-60+130	РА+стекловолокно	134				
	S 7	2	-60+130	РА+стекловолокно	138				
	S2	2	-60+130	РА+стекловолокно	142				
	S4	2	-60+130	РА+стекловолокно	144				
	S 5	2	-60+130	РА+стекловолокно	148				
	S6	2	-60+130	РА+стекловолокно	150				
	S9	2	-60+130	РА+стекловолокно	152				

ОПОРНО-ГРЯЗЕЗАЩИТНОЕ КОЛЬЦО ПОРШНЯ S24

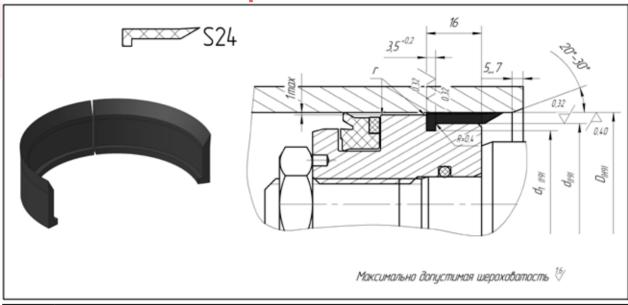
Описание

S24 - кольцо разрезное с дополнительной функцией грязесъемника. Разрез прямой. Грязезащита методом отбоя частиц.

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах

Материалы


Полиамид (РА) + стекловолокно

Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

ОПОРНО-ГРЯЗЕЗАЩИТНОЕ КОЛЬЦО ПОРШНЯ S24

	Рекомендации по допускам и размерам
r	удаление острых кромок r ≤0.2 mm

Код	Код Евро	Обозначение	D	d	d1	Цена РА
A600	A600	S24-140	140	133	129	

Описание

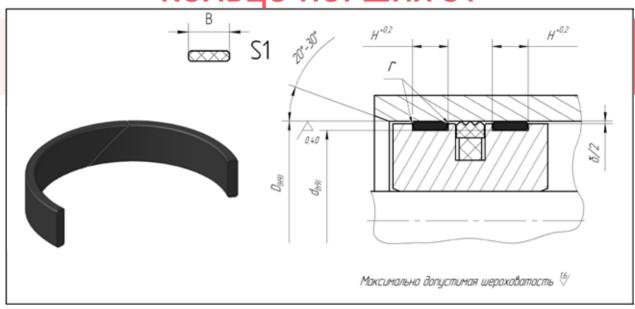
S1 - опорно-направляющее кольцо, предназначенное для использования в поршнях.

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу

Материалы

Полиамид (РА) + стекловолокно


Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

При проектировании цилиндра, направляющее кольцо S1 следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S1 не подходит для сухих условий работы.

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам								
r	r удаление острых кромок r ≤0.2 mm								
	D ≤ 25mm D ≥ 25mm ≥ 100mm >100mm								
O	0,60 mm	0,80 mm	1,30 mm						

Код	Код Евро	Обозначение	D	d	Н	В	Цена РА
B607	V607	S1-050	50	45	8,2	8,0	
B600	V600	S1-080	80	74	12,2	12,0	
B608	V608	S1-080/1	80	75	12,2	12,0	
B601	V601	S1-090	90	84	12,2	12,0	
B612	V612	S1-090/1	90	85	12,2	12,0	
B602	V602	S1-100	100	94	12,2	12,0	
B610	V610	S1-100/1	100	95	12,2	12,0	
B603	V603	S1-110	110	104	12,2	12,0	
B613	V613	S1-110/1	110	105	12,2	12,0	
B604	V604	S1-125	125	119	15,2	15,0	
B611	V611	S1-125/1	125	120	15,2	15,0	
B605	V605	S1-140	140	133	15,2	15,0	
B609	V609	S1-140/1	140	135	15,2	15,0	
B606	V606	S1-160	160	152	15,2	15,0	
B614	V614	S1-160/1	160	155	15,2	15,0	

Описание

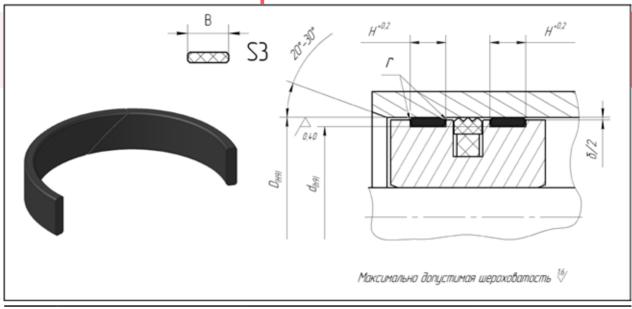
S3 - опорно-направляющее кольцо, предназначенное для использования в поршнях.

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу

Материалы

Полиамид (РА) + стекловолокно


Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

При проектировании цилиндра, направляющее кольцо S1 следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S3 не подходит для сухих условий работы.

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам							
r	r удаление острых кромок r ≤0.2 mm							
\$	D ≤ 25mm	$D \ge 25mm \ge 100mm$	>100mm					
Ü	0,60 mm	0,80 mm	1,30 mm					

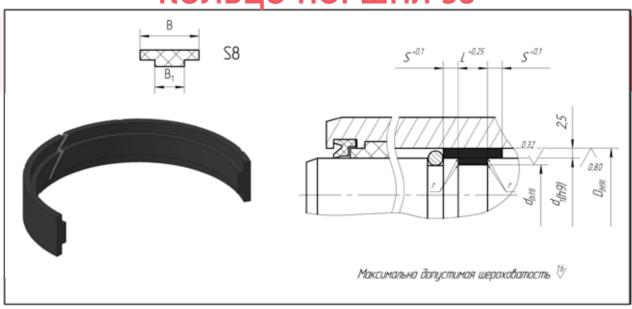
Код	Код Евро	Обозначение	D	d	Н	В	Цена РА
Γ642	G642	S3-32-28/6.3	32	28	6,3	6,1	
Γ602	G602	\$3-40-36/6.3	40	36	6,3	6,1	
Г613	G613	S3-63-57/12.8	63	57	12,8	12,6	
Г616	G616	S3-80-74/12.8	80	74	12,8	12,6	
Г619	G619	S3-100-94/12.8	100	94	12,8	12,6	
Г622	G622	S3-110-104/12.8	110	104	12,8	12,6	-
Г624	G624	S3-125-119/12.8	125	119	12,8	12,6	
						,	

Описание

S8 - опорно-направляющее кольцо, предназначенное для использования в поршнях.

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу


Материалы

Полиамид (РА) + стекловолокно

Применение

- телескопические цилиндры
- плунжерные цилиндры

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

		Реком	ендации	по допус	скам и ра	змерам				
r			удалени				m			
							i	1	ì	
Код	Код Евро	Обозначение	D	d1	d	L	S	В	B ₁	Цена РА
Д602	D602	S8-60-51/8,2	60	55	51	8,2	4,0	16.0	8.0	
Д600	D600	S8-80-71/8,2	80	75	71	8,2	4,0	16.0	8.0	
Д601	D601	S8-100-91/8,2	100	95	91	8,2	4,0	16.0	8.0	
Д603	D603	S8-120-111/8,2	120	115	111	8,2	4,0	16.0	8.0	
Д604	D604	S8-140-131/8,2	140	135	131	8,2	4,0	16.0	8.0	
Д605	D605	S8-170-161/8,2	170	165	161	8,2	4,0	16.0	8.0	

Описание

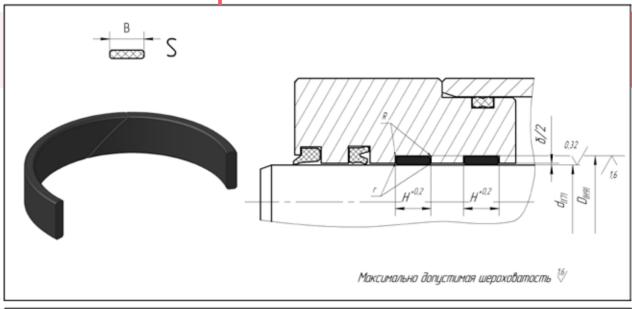
S - опорно-направляющее кольцо, предназначенное для использования в поршнях и штоках

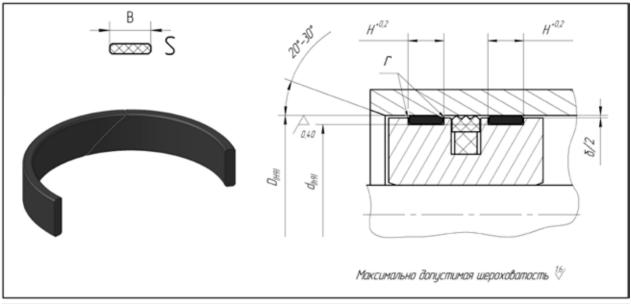
Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров

Материалы

Полиамид (РА) + стекловолокно


Применение


- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

При проектировании цилиндра, направляющее кольцо S следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S не подходит для сухих условий работы.

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

	Рекомендации по допускам и размерам							
R	R ≤ 0.2 mm							
r	удаление острых кромок r ≤ 0.2 mm							
	$D \le 25 \text{mm} \qquad D \ge 25 \text{mm} \ge 100 \text{mm} \qquad >100 \text{mm}$							
	0,60 mm	0,80 mm	1,30 mm					

Код	Код Евро	Обозначение	d	D	Н	В	Цена РА
A702	A702	S-40-45/10.0	40	45	10	9.8	
A710	A710	S-45-50/10.0	45	50	10	9.8	
A718	A718	S-50-55/10.0	50	55	10	9.8	
A726	A726	S-55-60/10.0	55	60	10	9.8	
A734	A734	S-56-61/10.0	56	61	10	9.8	
A742	A742	S-58-63/10.0	58	63	10	9.8	
A750	A750	S-60-65/10.0	60	65	10	9.8	

Код	Код Евро	Обозначение	d	D	Н	В	Цена РА
A758	A758	S-63-68/10.0	63	68	10	9.8	
A766	A766	S-65-70/10.0	65	70	10	9.8	
A774	A774	S-70-75/10.0	70	75	10	9.8	
A782	A782	S-75-80/10.0	75	80	10	9.8	
A790	A790	S-80-85/10.0	80	85	10	9.8	
A798	A798	S-85-90/10.0	85	90	10	9.8	
A7106	A7106	S-90-95/10.0	90	95	10	9.8	
A7114	A7114	S-95-100/10.0	95	100	10	9.8	
A7122	A7122	S-100-105/10.0	100	105	10	9.8	
A7130	A7130	S-105-110/10.0	105	110	10	9.8	
A7138	A7138	S-110-115/10.0	110	115	10	9.8	
A7149	A7149	S-120-125/16.0	120	125	16	15.8	

Код	Код Евро	Обозначение	d	D	Н	В	Цена РА
	Евро						17
							-

Описание

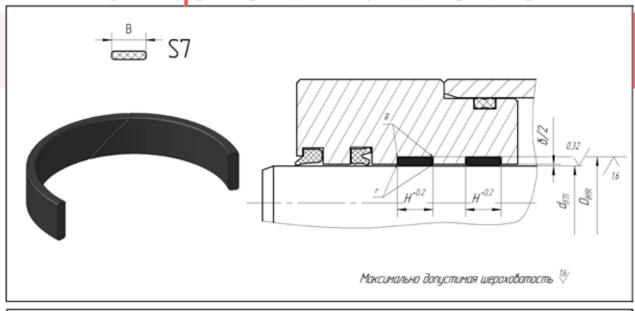
S7 - опорно-направляющее кольцо, предназначенное для использования в поршнях и штоках

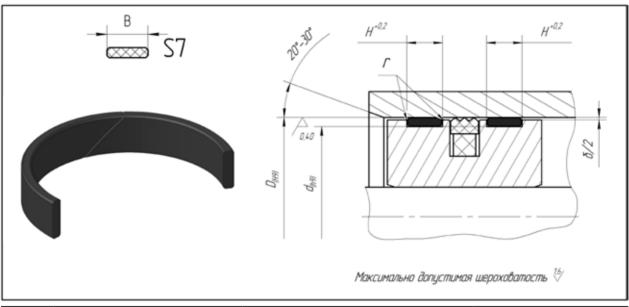
Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров

Материалы

Полиамид (РА) + стекловолокно


Применение


- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

При проектировании цилиндра, направляющее кольцо S7 следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S7 не подходит для сухих условий работы.

- давление до 40 МПа
- скорость скольжения до 2м/с.
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии

Рекомендации по допускам и размерам									
R	R ≤ 0.2 mm								
r	удаление острых кромок r ≤ 0.2 mm								
	Ι	O ≤ 25mm	D	≥ 25mm ≥ 1	100mm		>100m	ım	
δ		0,60 mm	0,80 mm 1,30 mm					m	
Код	Код Евро	Обозначен	ие	D	d	Н	В	Цена РА	
Б7109	B7109	S7-30-25/5	.6	30	25	5,6	5.4		
Б704	B704	S7-35-30/9.7		35	30	9,7	9.5		
Б7108	B7108	S7-37-32/5.6		37	32	5,6	5.4		
Б706	B706	06 S7-40-35/5.6		40	35	5,6	5.4		
Б709	B709	S7-40-35/9.7		40	35	9,7	9.5		
Б710	B710	S7-45-40/5.6		45	40	5,6	5.4		
Б713	B713	3 S7-45-40/9.7		45	40	9,7	9.5		
Б714	B714	S7-50-45/5	.6	50	45	5,6	5.4	·	

Код	Код Евро	Обозначение	D	d	Н	В	Цена РА
Б7112	B7112	S7-50-45-7.0/7.2	50	45	7.2	7.0	
Б717	B717	S7-50-45/9.7	50	45	9,7	9.5	
Б7107	B7107	S7-53-48/9.7	53	48	9,7	9.5	
Б721	B721	S7-55-50/5.6	55	50	5,6	5.4	
Б724	B724	S7-55-50/9.7	55	50	9,7	9.5	
Б726	B726	S7-60-55/5.6	60	55	5,6	5.4	
Б7111	B7111	\$7-60-55-7.0/7.2	60	55	7.2	7.0	
Б729	B729	S7-60-55/9.7	60	55	9,7	9.5	
Б733	B733	S7-61-56/9.7	61	56	9,7	9.5	
Б7105	B7105	S7-63-58/9.7	63	58	9,7	9.5	
Б736	B736	S7-65-60/5.6	65	60	5,6	5.4	
Б739	B739	S7-65-60/9.7	65	60	9,7	9.5	
Б741	B741	S7-65-60/19.4	65	60	19,4	19.2	
Б743	B743	S7-68-63/9.7	68	63	9,7	9.5	
Б7113	B7113	\$7-70-65-7.0/7.2	70	65	7.2	7.0	
Б748	B748	S7-70-65/9.7	70	65	9,7	9.5	
Б751	B751	S7-75-70/5.6	75	70	5,6	5.4	
Б754	B754	S7-75-70/9.7	75	70	9,7	9.5	
Б756	B756	S7-80-75/5.6	80	75	5,6	5.4	
Б759	B759	S7-80-75/9.7	80	75	9,7	9.5	
Б761	B761	S7-80-75/19.4	80	75	19,4	19.2	
Б765	B765	S7-85-80/9.7	85	80	9,7	9.5	
Б768	B768	\$7-90-85-9.5/9.7	90	85	9.7	9.5	
Б770	B770	S7-95-90/5.6	95	90	5,6	5.4	
Б772	B772	S7-95-90/9.7	95	90	9,7	9.5	
Б774	B774	S7-95-90/19.4	95	90	19,4	19.2	
Б7114	B7114	S7-100-95-15.0/15.2	100	95	15.2	15.0	
Б777	B777	S7-100-95/9.7	100	95	9,7	9.5	
Б779	B779	S7-105-100/5.6	105	100	5,6	5.4	
Б781	B781	S7-105-100/9.7	105	100	9,7	9.5	
Б784	B784	S7-110-105/9.7	110	105	9,7	9.5	
Б785	B785	S7-110-105-15.0/15.2	110	105	15.2	15.0	
Б786	B786	S7-110-105/19.4	110	105	19,4	19.2	
Б788	B788	S7-115-110/9.7	115	110	9,7	9.5	
Б792	B792	S7-120-115-15.0/15.2	120	115	15.2	15.0	
Б795	B795	S7-125-120/9.7	125	120	9,7	9.5	

Код	Код Евро	Обозначение	D	d	Н	В	Цена РА

ОПОРНО-НАПРАВЛЯЮЩЕЕ КОЛЬЦО ШТОКА S2

Описание

S2 - опорно-направляющее кольцо, предназначенное для использования в штоках.

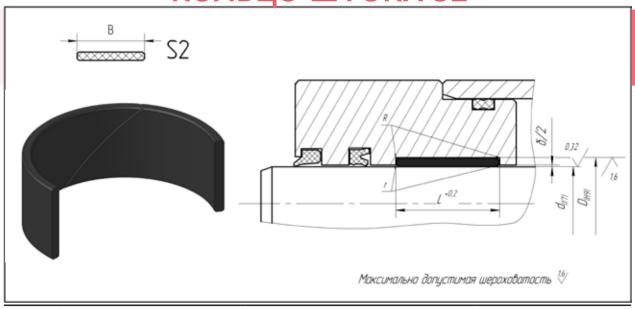
Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу

Материалы

Полиамид (РА) + стекловолокно

Применение


- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры
- гидроцилиндры с большими радиальными нагрузками

Примечания

При проектировании цилиндра, направляющее кольцо S2 следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S2 не подходит для сухих условий работы.

- \bullet давление до 40 МПа
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии
- скорость скольжения до 2м/с.

ОПОРНО-НАПРАВЛЯЮЩЕЕ КОЛЬЦО ШТОКА S2

Рекомендации по допускам и размерам								
R	R ≤ 0.2 mm							
r	удаление острых кромок r ≤ 0.2 mm							
\$	D ≤ 25mm	$D \geq 25mm \geq 100mm$	>100mm					
0	0,60 mm	0,80 mm	1,30 mm					

Код	Код Евро	Обозначение	d	D	L	В	Цена РА
A813	A813	S2-025	25	29	6,3	6,1	
A801	A801	S2-040	40	45	20,2	20,0	
A814	A814	S2-045	45	50	20,2	20,0	
A803	A803	S2-050	50	55	20,2	20,0	
A804	A804	S2-050/1	50	56	20,2	20,0	
A819	A819	S2-055	55	60	20,2	20,0	
A820	A820	S2-055/1	55	61	20,2	20,0	
A805	A805	S2-056	56	62	20,2	20,0	
A815	A815	S2-056/1	56	61	20,2	20,0	
A817	A817	S2-060/1	60	65	20,2	20,0	
A806	A806	S2-060	60	65	30,2	30,0	
A807	A807	S2-063	63	68	30,2	30,0	
A821	A821	S2-063/1	63	69	30,2	30,0	
A808	A808	S2-070	70	75	30,2	30,0	
A822	A822	S2-070/1	70	76	30,2	30,0	
A809	A809	S2-080	80	86	30,2	30,0	
A818	A818	S2-080/1	80	85	30,2	30,0	
A810	A810	S2-090	90	96	30,2	30,0	
A816	A816	S2-090/1	90	95	30,2	30,0	
A811	A811	S2-100	100	106	30,2	30,0	
A823	A823	S2-100/1	100	105	30,2	30,0	
A812	A812	S2-110	110	116	30,2	30,0	
A824	A824	S2-110/1	110	115	30,2	30,0	
			•	•	_	-	

ОПОРНО-НАПРАВЛЯЮЩЕЕ КОЛЬЦО ШТОКА S4

Описание

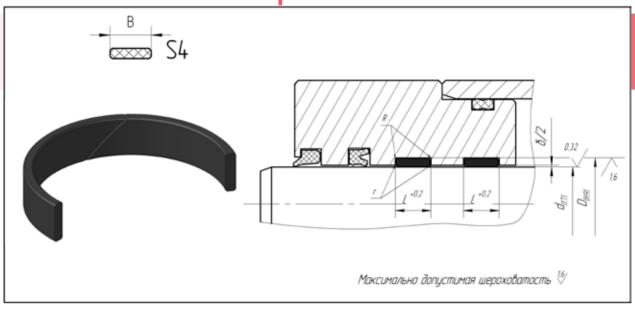
S4 - опорно-направляющее кольцо, предназначенное для использования в штоках

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров

Материалы

Полиамид (РА) + стекловолокно


Применение

- сельскохозяйственная техника
- дорожно-строительная техника
- грузоподъемные машины
- промышленное оборудование
- стандартные цилиндры

Примечания

При проектировании цилиндра, направляющее кольцо S4 следует поместить в то место, где у него будет непосредственный контакт со средой. Кольцо S4 не подходит для сухих условий работы.

- давление до 40 МПа
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии
- скорость скольжения до 2м/с.

	Рекоме	ндации по допускам и размерам								
R	R $R \le 0.2 \text{ mm}$									
r	удаление острых кромок r ≤ 0.2 mm									
8	D ≤ 25mm	$D \geq 25mm \geq 100mm$	>100mm							
	0,60 mm	0,80 mm	1,30 mm							

Код	Код Евро	Обозначение	d	D	L	В	Цена РА
Б800	B800	S4-20-24/9.7	20	24	9,7	9,5	
Б864	B864	\$4-25-28,1/4.0	25	28,1	4,0	3,8	
Б890	B890	\$4-25-28/5.6	25	28	5,6	5,4	
Б801	B801	S4-25-29/9.7	25	29	9,7	9,5	
Б802	B802	\$4-30-34/9.7	30	34	9,7	9,5	
Б865	B865	\$4-32-35,1/4.0	32	35,1	4,0	3,8	
Б803	B803	S4-32-36/9.7	32	36	9,7	9,5	
Б863	B863	S4-35-39/9.7	35	39	9,7	9,5	
Б869	B869	S4-36-40/9.7	36	40	9,7	9,5	
Б807	B807	S4-40-44/9.7	40	44	9,7	9,5	
Б878	B878	S4-40-46/9.7	40	46	9,7	9,5	
Б879	B879	S4-45-51/9.7	45	51	9,7	9,5	
Б813	B813	S4-50-56/9.7	50	56	9,7	9,5	
Б816	B816	S4-55-61/9.7	55	61	9,7	9,5	
Б861	B861	S4-56-62/10.0	56	62	10	9,8	
Б882	B882	S4-56-62/10.2	56	62	10,2	10,0	
Б862	B862	S4-56-62/12.8	56	62	12,8	12,6	
Б821	B821	S4-60-66/12.8	60	66	12,8	12,6	
Б824	B824	S4-63-69/12.8	63	69	12,8	12,6	
Б829	B829	S4-70-76/12.8	70	76	12,8	12,6	
Б883	B883	S4-75-81/10.2	75	81	10,2	10,0	
Б832	B832	S4-75-81/12.8	75	81	12,8	12,6	
Б834	B834	S4-80-86/12.8	80	86	12,8	12,6	
Б838	B838	S4-90-96/12.8	90	96	12,8	12,6	

Код	Код Евро	Обозначение	d	D	L	В	Цена РА
Б880	B880	S4-95-101/10.2	95	101	10,2	10,0	
Б840	B840	S4-95-101/12.8	95	101	12,8	12,6	
Б845	B845	S4-100-106/12.8	100	106	12,8	12,6	
Б881	B881	S4-115-121/10.2	115	121	10,2	10,0	
Б884	B884	S4-117-123/10.2	117	123	10,2	10,0	
Б886	B886	S4-117-123/12.8	117	123	12,8	12,6	
Б885	B885	S4-142-148/10.2	142	148	10,2	10,0	
Б887	B887	S4-142-148/12.8	142	148	12,8	12,6	
Б888	B888	S4-170-176/19.0	170	176	19,0	18,8	

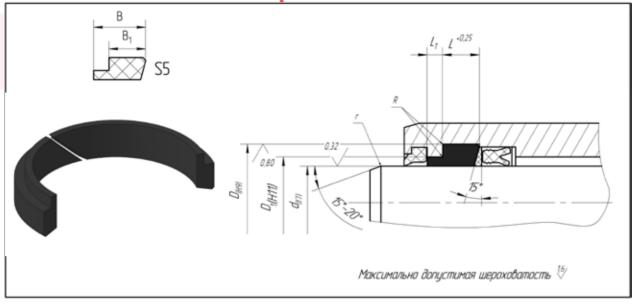
Код	Код Евро	Обозначение	d	D	L	В	Цена РА
			,		,	,	

Описание

S5 - опорно-направляющее кольцо, предназначенное для использования в штоках

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров


Материалы

Полиамид (РА) + стекловолокно

Применение

- телескопические цилиндры
- плунжерные цилиндры

- давление до 40 МПа
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии
- скорость скольжения до 2м/с.

	Рекомендации по допускам и размерам							
R	R ≤ 0.2 mm							
r	удаление острых кромок r ≤ 0.2 mm							

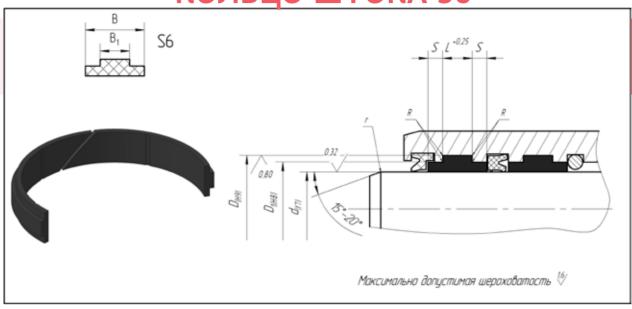
Код Евро	Обозначение	d	D	D1	L	L1	β°	В	B ₁	Цена РА
V806	S5-55-67/10.2	55	67	60	10,2	4,2	15°	14.2	10.0	
V800	S5-56-68/10.2	56	68	61	10,2	4,2	15°	14.2	10.0	
V801	S5-75-87/10.2	75	87	80	10,2	4,2	15°	14.2	10.0	
V802	S5-95-107/10.2	95	107	100	10,2	4,2	15°	14.2	10.0	
V803	S5-115-127/10.2	115	127	120	10,2	4,2	15°	14.2	10.0	
V804	S5-117-129/10.2	117	129	122	10,2	4,2	15°	14.2	10.0	
V805	S5-142-154/10.2	142	154	147	10,2	4,2	15°	14.2	10.0	
	V806 V800 V801 V802 V803 V804	Евро Обозначение V806 S5-55-67/10.2 V800 S5-56-68/10.2 V801 S5-75-87/10.2 V802 S5-95-107/10.2 V803 S5-115-127/10.2 V804 S5-117-129/10.2	Евро Обозначение d V806 S5-55-67/10.2 55 V800 S5-56-68/10.2 56 V801 S5-75-87/10.2 75 V802 S5-95-107/10.2 95 V803 S5-115-127/10.2 115 V804 S5-117-129/10.2 117	Eвро Обозначение d D V806 S5-55-67/10.2 55 67 V800 S5-56-68/10.2 56 68 V801 S5-75-87/10.2 75 87 V802 S5-95-107/10.2 95 107 V803 S5-115-127/10.2 115 127 V804 S5-117-129/10.2 117 129	Eвро Обозначение d D D1 V806 S5-55-67/10.2 55 67 60 V800 S5-56-68/10.2 56 68 61 V801 S5-75-87/10.2 75 87 80 V802 S5-95-107/10.2 95 107 100 V803 S5-115-127/10.2 115 127 120 V804 S5-117-129/10.2 117 129 122	Eвро Обозначение d D D1 L V806 S5-55-67/10.2 55 67 60 10,2 V800 S5-56-68/10.2 56 68 61 10,2 V801 S5-75-87/10.2 75 87 80 10,2 V802 S5-95-107/10.2 95 107 100 10,2 V803 S5-115-127/10.2 115 127 120 10,2 V804 S5-117-129/10.2 117 129 122 10,2	Eвро Обозначение d D D1 L L1 V806 S5-55-67/10.2 55 67 60 10,2 4,2 V800 S5-56-68/10.2 56 68 61 10,2 4,2 V801 S5-75-87/10.2 75 87 80 10,2 4,2 V802 S5-95-107/10.2 95 107 100 10,2 4,2 V803 S5-115-127/10.2 115 127 120 10,2 4,2 V804 S5-117-129/10.2 117 129 122 10,2 4,2	Веро Обозначение d D D1 L L1 В V806 S5-55-67/10.2 55 67 60 10,2 4,2 15° V800 S5-56-68/10.2 56 68 61 10,2 4,2 15° V801 S5-75-87/10.2 75 87 80 10,2 4,2 15° V802 S5-95-107/10.2 95 107 100 10,2 4,2 15° V803 S5-115-127/10.2 115 127 120 10,2 4,2 15° V804 S5-117-129/10.2 117 129 122 10,2 4,2 15°	Eвро Обозначение d D D1 L L1 β° B V806 S5-55-67/10.2 55 67 60 10,2 4,2 15° 14.2 V800 S5-56-68/10.2 56 68 61 10,2 4,2 15° 14.2 V801 S5-75-87/10.2 75 87 80 10,2 4,2 15° 14.2 V802 S5-95-107/10.2 95 107 100 10,2 4,2 15° 14.2 V803 S5-115-127/10.2 115 127 120 10,2 4,2 15° 14.2 V804 S5-117-129/10.2 117 129 122 10,2 4,2 15° 14.2	Eвро Обозначение d D D1 L L1 в° в в₁ V806 S5-55-67/10.2 55 67 60 10,2 4,2 15° 14.2 10.0 V800 S5-56-68/10.2 56 68 61 10,2 4,2 15° 14.2 10.0 V801 S5-75-87/10.2 75 87 80 10,2 4,2 15° 14.2 10.0 V802 S5-95-107/10.2 95 107 100 10,2 4,2 15° 14.2 10.0 V803 S5-115-127/10.2 115 127 120 10,2 4,2 15° 14.2 10.0 V804 S5-117-129/10.2 117 129 122 10,2 4,2 15° 14.2 10.0

Описание

S6 - опорно-направляющее кольцо, предназначенное для использования в штоках

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров


Материалы

Полиамид (РА) + стекловолокно

Применение

- телескопические цилиндры
- плунжерные цилиндры

- давление до 40 МПа
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии
- скорость скольжения до 2м/с.

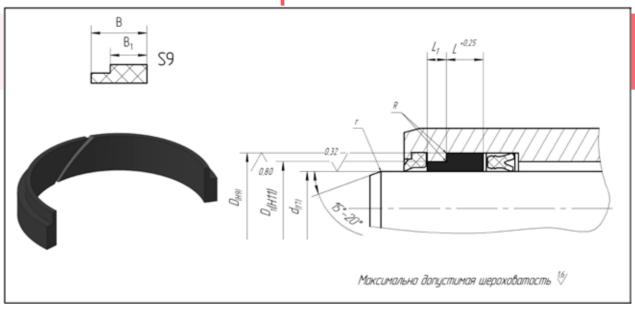
	,	Рекоменд	ации по			мерам					
R		R ≤ 0.2 mm									
r		удаление острых кромок r ≤ 0.2 mm									
Код	Код Евро	Обозначение	d	D	D1	L	S	В	B ₁	Цена РА	
Г800	G800	S6-55-64/8.2	55	64	60	8,2	4,0	16.0	8.0		
Г804	G804	S6-56-65/8.2	56	65	61	8,2	4,0	16.0	8.0		
Г801	G801	S6-75-84/8.2	75	84	80	8,2	4,0	16.0	8.0		
Г802	G802	S6-95-104/8.2	95	104	100	8,2	4,0	16.0	8.0		
Г803	G803	S6-115-124/8.2	115	124	120	8,2	4,0	16.0	8.0		
Г805	G805	S6-117-126/8.2	117	126	120	8,2	4,0	16.0	8.0		
Г806	G806	S6-135-144/8.2	135	144	140	8,2	4,0	16.0	8.0		
Г807	G807	S6-165-174/8.2	165	174	170	8,2	4,0	16.0	8.0		

Описание

S9 - опорно-направляющее кольцо, предназначенное для использования в штоках

Свойства

- легкий монтаж
- хорошая стабильность размеров при рабочих температурах
- защита от гидродинамического давления благодаря косому разрезу
- широкий диапазон размеров


Материалы

Полиамид (РА) + стекловолокно

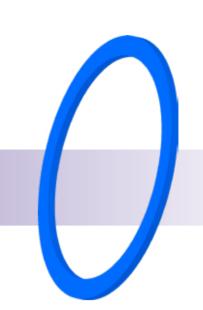
Применение

- телескопические цилиндры
- плунжерные цилиндры

- давление до 40 МПа
- температура -60°С... +130°С
- среда минеральные масла и водно-масляные эмульсии
- скорость скольжения до 2м/с.

		Рекомендации по допускам и размерам								
	1	Реком	лендации			азмерам				
R		$R \leq 0.2 \ \text{mm}$ удаление острых кромок r $\leq 0.2 \ \text{mm}$								
r			удалени	е острых	кромок	$r \le 0.2 \text{ m}$	m			
Код	Код Евро	Обозначение	d	D	D1	L	L1	В	B ₁	Цена
Код	Код Евро	Ооозначение	ď	D	D1	_		5	D ₁	PA
Д800	D800	S9-115-125/15.2	115	125	119	10,2	5,2	15.0	10.0	
Д801	D801	S9-117-127/15.2	117	127	121	10,2	5,2	15.0	10.0	
Д802	D802	S9-142-152/15.2	142	152	146	10,2	5,2	15.0	10.0	
			_							

Код	Код Евро	Обозначение	d	D	D1	L	L1	В	B ₁	Цена РА



КОЛЬЦА ЗАЩИТНЫЕ

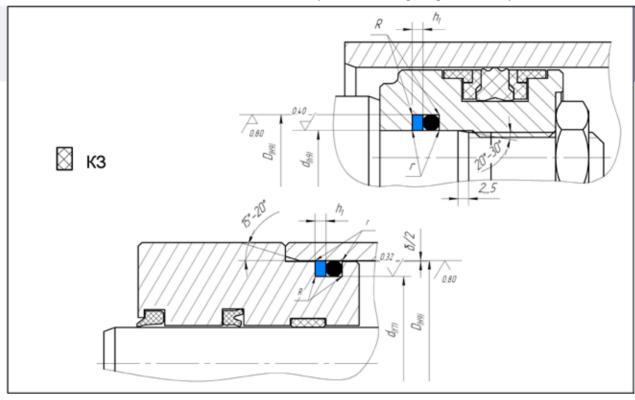
	_	технические	характеристики		
Профиль	Тип	скорость, м/с	темп. °С	Материал	Стр.
	K3 (TPE)	2	-50+100	TPE	156

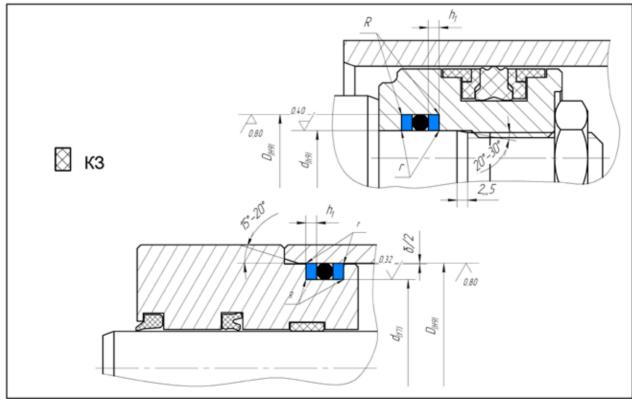
Описание

КЗ - кольцо защитное противовыдавливания манжеты штока

Свойства

- препятствует выдавливанию уплотнителя в зазор
- легкий монтаж
- хорошая стабильность размеров при рабочих температурах


Материалы

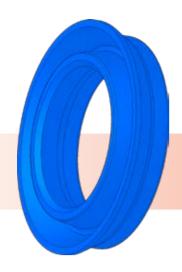

Полиэфир (TPE) "HYTREL" 72D

Применение

• статические гидравлические соединения

- температура -50°С... +100°С
- среда минеральные масла и водно-масляные эмульсии

		Рекомендации по	допускам и разм	ерам		
R	0 mm $< d \le 20$ mm	20mm < d ≤ 50mm	50mm < d ≤ 10	0mm	d ≥ 100r	nm
	max 0.50 mm	max 0.80 mm	max 1.0 mi		max 1.5	mm
r		удаление о	стрых кромок r ≤	0.3 mm		
	Pa	 абочее давление при мак	симально допуст	имом зазоре		
	10 MPa	> 16 MPa	> 25 MPa		> 40 M	Pa
δ	0.5 mm	0.40 mm	0.25 mm		0.18 m	m
Код	Код Евро	Обозначение	D	d	h1	Цена ТРЕ
Б608	B608	K3 51,6-46-1.5	51,6	46	1.5	
Б603	B603	K3 80-71-1.7	80	70,8	1.7	
Б602	B602	K3 100-91-1.7	100	90,8	1.7	
Б609	B609	K3 100-92,6-1.5	100	92,6	1.5	
Б601	B601	K3 110-101-1.7	110	100,8	1.7	
Б606	B606	K3 125-115,8-1.5	125	115,8	1.5	
Б607	B607	K3 125-117-1.7	125	117	1.7	
Б600	B600	K3 140-130-2.0	140	130	2.0	


Код	Код Евро	Обозначение	D	d	h1	Цена ТРЕ
			_			

ПНЕВМАТИЧЕСКИЕ УПЛОТНЕНИЯ

		техн	ические характер			
Профиль	Тип	давление, МПа	скорость, м/с	Материал	Стр.	
	РМ	1,2	≤1,0	-40°C +100	TPU	161
	PMK	1,2	≤1,0	-40°C +100	TPU	163
	PR	1,6	≤1,0	-35°C +110	TPU	165
	PS	1,6	≤1,0	-35°C +110	TPU	167
	PK	1,6	≤1,0	-35°C +110	TPU	169

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ПОРШНЯ РМ

Описание

PM – пневматическое уплотнение поршня одностороннего действия с ассиметричным профилем и специальной уплотняющей кромкой на динамической рабочей кромке.

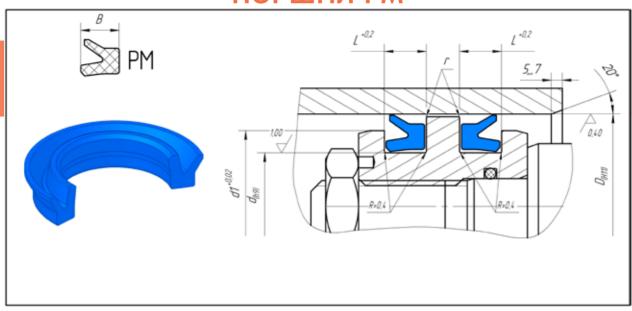
Свойства

- простая конструкция канавки
- низкий коэффициент трения
- надежная посадка в основании канавки благодаря специальному профилю

Материалы

Полиуретан (TPU) "Desythane" 85А

Применение


Стандартные пневматические цилиндры

- температура -40°C +100°C
- скорость скольжения ≤1,0 м/с
- рабочее давление 1,2 Мпа
- среда очищенный, сухой и обезжиренный сжатый воздух

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ПОРШНЯ РМ

Код	Код Евро	Обозначение	D	d	L	В	d1	Цена TPU
M101	M101	PM-32-24-6,0	32	24	6	5.5	30.5	
M100	M100	PM-50-40-7,5	50	40	7.5	7	48.5	
					_			

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ПОРШНЯ РМК

Описание

РМК – пневматическое уплотнение поршня одностороннего действия с ассиметричным профилем и специальной наружной рабочей кромкой.

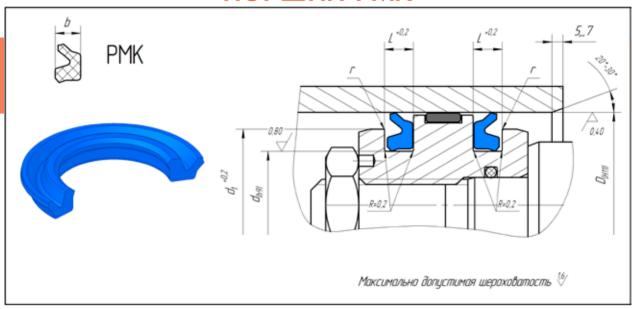
Свойства

- компактность
- простая конструкция посадочной канавки
- надежная фиксация в монтажном пространстве благодаря толстой статической уплотнительной кромке

Материалы

Полиуретан (TPU) "Desythane" 85A

Применение


Стандартные пневматические цилиндры

- температура -40°С +100°С
- скорость скольжения ≤1,0 м/с
- рабочее давление 1,2 Мпа
- среда очищенный, сухой и обезжиренный сжатый воздух

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ПОРШНЯ РМК

Код	Код Евро	Обозначение	d	D	L	d ₁	r	b	Цена TPU
M400	M400	PMK-32-24-3,5	24	32	3.5	31.4	0.2	3.25	

Описание

PR – пневматическое амортизирующее уплотнение благодаря специальной конструкции распорных выступов и перепускных каналов обеспечивает постоянное надежное демпфирование в конце хода поршня

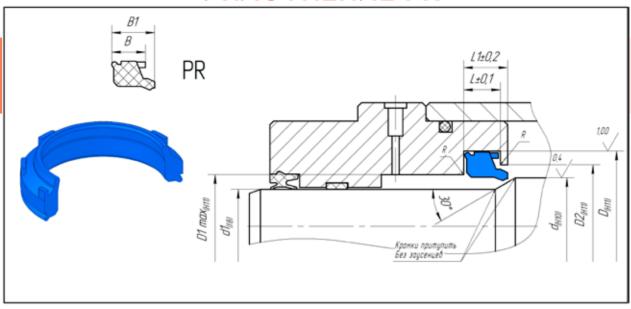
Свойства

- простой и легкий монтаж
- хорошая амортизация благодаря специальной конструкции распорных выступов и перепускных каналов
- может использоваться для тяжелых режимов работы

Материалы

• Полиуретан (TPU) "SEALAN" 93A

Применение


Стандартные пневматические цилиндры

- температура -35°C +110°C
- скорость скольжения ≤1,0 м/с
- рабочее давление 1,6 Мпа
- среда очищенный, сухой и обезжиренный сжатый воздух

ПНЕВМАТИЧЕСКОЕ АМОРТИЗИРУЮЩЕЕ УПЛОТНЕНИЕ PR

Код	Код Евро	Обозначение	d	D	D1 max	D2	d1	B1	В	L	L1	Цена TPU
M201	M201	PR-016	16	24	17	21	12	7.8	6.2	7	9	
M200	M200	PR-040	40	50	41.5	45	36	7.8	6.2	7	9	

Описание

PS – пневматическое комбинированное уплотнение штока одностороннего действия не требующее дополнительной осевой фиксации в монтажном пространстве, манжета и грязесъёмник объединены в один элемент

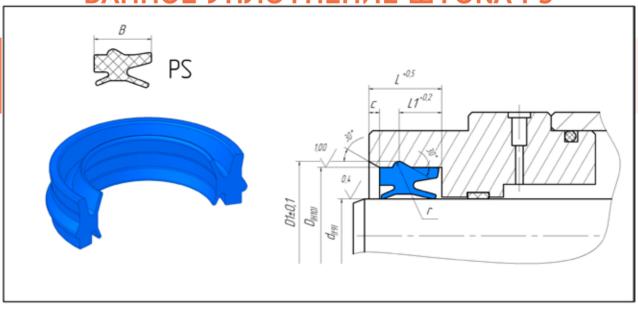
Свойства

- компактность
- высокая износостойкость
- не требует дополнительной осевой фиксации в монтажном пространстве

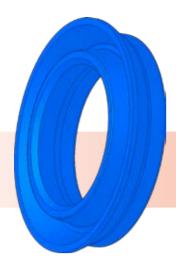
Материалы

• Полиуретан (TPU) "SEALAN" 93A

Применение


Стандартные пневматические цилиндры

- температура -35°C +110°C
- скорость скольжения ≤1,0 м/с
- рабочее давление 1,6 Мпа
- среда очищенный, сухой и обезжиренный сжатый воздух



ПНЕВМАТИЧЕСКОЕ КОМБИНИРО-ВАННОЕ УПЛОТНЕНИЕ ШТОКА PS

Код	Код Евро	Обозначение	d	D	В	L	L1	D1	r	С	Цена TPU
M301	M301	PS-012	12	22	10.4	13	7.7	24.2	1.1	1.5	
M300	M300	PS-020	20	30	10.4	13	7.7	32.2	1.1	1.5	
						_					

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ШТОКА РК

Описание

РК – пневматическое уплотнение штока одностороннего действия, которое препятствует попаданию инородных частиц в пневматические цилиндры. Кромки спроектированы таким образом, что они функционируют как уплотнение штока и грязесъёмник.

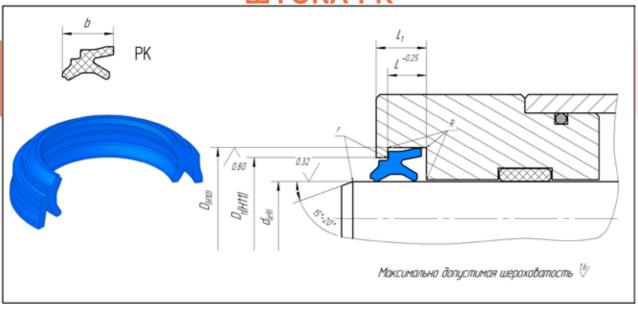
Свойства

- компактность
- улучшенный герметизирующий эффект
- низкое динамическое трение
- высокая износостойкость

Материалы

• Полиуретан (TPU) "SEALAN" 93A

Применение


Компактные и специальные малые цилиндры

- температура -35°C +110°C
- скорость скольжения ≤1,0 м/с
- рабочее давление 1,6 Мпа
- среда очищенный, сухой и обезжиренный сжатый воздух

ПНЕВМАТИЧЕСКОЕ УПЛОТНЕНИЕ ШТОКА РК

Код	Код Евро	Обозначение	d	D	D ₁	L	L ₁	b	Цена TPU
M600	M600	PK-010	10	16.1	14.1	4.2	5.4	6	

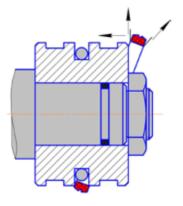
Материалы, применяемые для изготовления уплотнений и направляющих колец

Наименование материала	Твердость	Рабочее давление жидкости, МПа	Скорость скольжения, Vmax, м/с	Рабочая температура, °C
Термопластичный полиуретан (TPU) "Sealan"	93 A	40	0,5	-35+110
Термопластичный полиуретан (TPU) "DESYTHANE"	85 A	25	0,5	-40+100
Термопластичный полиэфир (TPE) "HYTREL"	47 D	40	0,5	-50+100
Термопластичный полиэфир (TPE) "HYTREL"	72 D	40	2	-50+100
Полиамид (РА) + стекловолокно		40	2	-60+130
Полиамид РА-6		50	0,5	-50+100
Резина маслобензостойкая 7В-14-1	75-85 A	10	-	-50+110

РЕКОМЕНДАЦИИ ПО МОНТАЖУ УПЛОТНЕНИЙ

1. ОБЩИЕ УКАЗАНИЯ

Монтаж уплотнений, обеспечивающий их герметичность и длительный срок службы, должен осуществляться с обязательным выполнением ниже перечисленных основных требований.

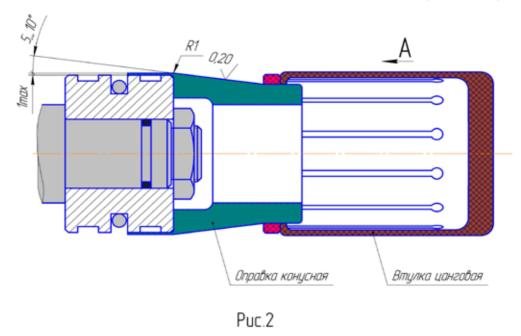

- Перед установкой уплотняющих элементов все сопрягаемые детали гидроузла необходимо очистить от загрязнений, стружки и других инородных частиц, продуть сжатым воздухом и смазать рабочей жидкостью.
- Острые кромки деталей, с которыми при установке могут контактировать уплотнения, должны быть скруглены.
- На конце гильзы или штока должна присутствовать фаска, размеры которой указаны в описаниях каждого типа уплотнений. Кромка в месте перехода от фаски к поверхности скольжения должна быть закруглена и отполирована.
- Запрещается при монтаже протягивать или проталкивать уплотнения через острые края канавок, отверстий, резьбу и т.п.
- Применяемые при монтаже вспомогательные приспособления должны быть изготовлены из мягкого материала, исключающего повреждение уплотнений, а также соответствовать типу и размерам уплотнений.
- Для повышения эластичности уплотнений перед монтажом рекомендуется их предварительный нагрев с погружением:
- 1) для термопластичного полиэфира «TPE» и фторопласта «FT» в кипящую воду на 1-2 минуты ;
 - 2) для термопластичного полиуретана «TPU» в горячее масло на 1-2 минуты;

2. МОНТАЖ ПОРШНЕВЫХ УПЛОТНЕНИЙ

Монтаж поршневых уплотнений может осуществляться в открытую или закрытую канавки.

Уплотнения малого размера с диаметром до 50 мм рекомендуется устанавливать в открытую канавку. Этот способ установки выполняется вручную и, как правило, затруднений не вызывает.

Установка эластичных уплотнений в закрытую канавку может быть осуществлена вручную. Использование при этом двух синтетических лент, продетых под уплотнительным элементом как показано на рис.1, позволяет несколько облегчить процесс монтажа.



Pur 1

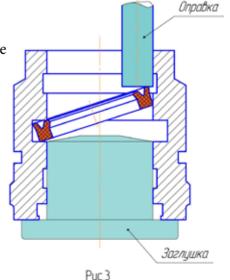
Установка малоэластичных уплотнений на цельные поршни должна выполняться с помощью специальной монтажной оснастки (рис2).

При установке двухкомпонентных уплотнений первым устанавливается вручную поджимное резиновое кольцо. Перекручивание кольца не допускается. Уплотнительное кольцо протягивается через смазанную маслом конусную оправку при помощи разжимной цанговой втулки (пластмассового лепесткового стакана) до попадания в посадочную канавку на поршне.

Данный способ обеспечивает легкость, правильность и безопасность монтажа. Для исключения возможности разрыва уплотнительные кольца из материала на основе фторопласта подлежат обязательному предварительному нагреву.

3. МОНТАЖ ШТОКОВЫХ УПЛОТНЕНИЙ

Аналогично поршневым уплотнениям, монтаж уплотнений штока также может осуществляться в открытую и закрытую канавки.

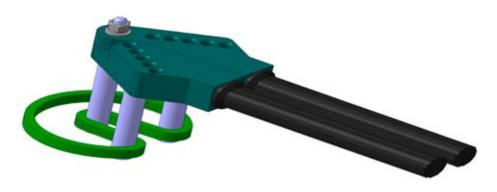
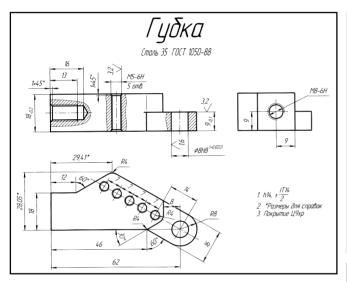
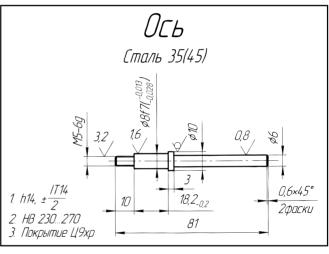

В открытую канавку рекомендуется устанавливать уплотнения с наружным диаметром менее (6-8) кратного значения толщины профиля. Такая установка возможна без применения дополнительных приспособлений. Манжеты MPU/2S устанавливаются только в открытую канавку.

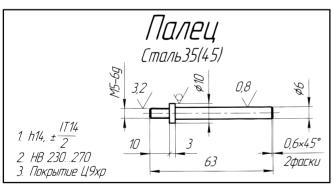
Установка уплотнения в закрытую канавку выполняется с использованием подходящей оправки и заглушки, изготовленных из пластмассы (рис.3). При этом уплотнение сначала встав-

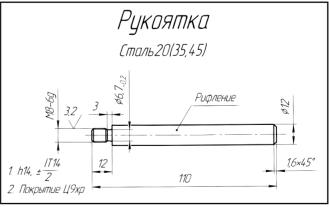
ляется с одной стороны в канавку вручную, а затем продвигается оправкой, пока полностью не установится на место.

При монтаже двухкомпонентных уплотнений сначала вставляется, не допуская перекручивания, поджимное резиновое кольцо, а затем профильное уплотнительное кольцо.

Значительно облегчает процесс установки штоковых уплотнений применение специальных щипцов (рис.4), с помощью которых уплотнительное кольцо или манжета сжимаются в форме почки, после чего вставляются в канавку. Во избежание острых перегибов уплотнения, диаметр пальцев на щипцах должен быть не менее (0,15-0,2) диаметра штока.


Рис.4


После установки уплотнения необходима его калибровка специальной оправкой, по размерам, качеству поверхности и наличию заходной фаски полностью повторяющей шток гидроцилиндра. Смазанная маслом оправка с небольшим поворачиванием в обе стороны должна быть вставлена в уплотнение со стороны низкого давления и плавно протянута через него.

ЧЕРТЕЖ ПРИСПОСОБЛЕНИЯ ДЛЯ УСТАНОВКИ УПЛОТНЕНИЙ

ХРАНЕНИЕ УПЛОТНЕНИЙ

Действия таких факторов как: озон, кислород, масла, растворители, свет, тепло - пагубно влияют на физические свойства уплотнений. Поэтому следует придерживаться правил хранения уплотнений:

<u>Температура</u>: до 25 °C. При более высоких температурах старение присходит гораздо быстрее. При низкой температуре уплотнения затвердевают.

Влажность: надо избегать очень сухих или очень влажных помещений.

<u>Кислород, озон и свет</u>: Уплотнения надо защищать от солнечного излучения, сильного искусственного света и от циркулирующего воздуха.

<u>Тара для хранения</u>: Воздухонепроницаемые полиэтиленовые пакеты (желательно темного цвета).

ПРИЧИНЫ ОТКАЗОВ УПЛОТНЕНИЙ

- 1. Несоответствие формы и размеров уплотнений форме и размерам посадочного места.
- 2. Повреждение уплотнений при монтаже в посадочные места (смятие рабочих кромок, сколы, разрывы, царапины) из-за некачественного монтажного инструмента и несоблюдения требований к заходным фаскам и ограниченному радиусу изгиба штоковых уплотнений.
 - 3. Наличие скручивания уплотнительных или поджимных колец в посадочных канавках.
- 4. Попадание под уплотнения частиц загрязнений из-за плохой очистки деталей от стружки, заусенцев, краски и других грязевых частиц, проникающих через грязесъемник или из рабочей жидкости при несоответствии ее 14 классу чистоты по ГОСТ 17216.
 - 5. Неправильная ориентация штоковых и поршневых уплотнений в посадочных местах.
- 6. Несоответствие размеров и шероховатости посадочного места требуемым значениям, а также наличие на рабочих поверхностях микродефектов в виде рисок, забоин, трещин, разрушения хромового покрытия и др.
 - 7. Увеличение сверхдопустимого люфта штока или поршня в их опорных элементах.
- 8. Несовместимость материалов уплотнений и рабочей жидкости или окружающей среды (повышенное набухание, потеря прочности или разложение).
- 9. Превышение допустимых температур нагрева уплотнений, например, при окраске собранного гидроцилиндра.
- 10. Превышение допустимых рабочих давлений рабочей жидкости для данной конструкции уплотнения и его места установки.
- 11. Несоответствие качества поверхности, размеров и материалов уплотнений требованиям конструкторской документации.
- 12. Повреждение уплотнений из-за нарушения требований по хранению и транспортированию.

ТРЕБОВАНИЯ К МЕСТАМ УСТАНОВКИ УПЛОТНЕНИЙ

Эксплуатационные свойства уплотнений (герметичность, плавность скольжения, минимальные силы трения, безотказность, срок службы) существенно зависят от точности и качества выполнения посадочных мест и диаметров сопрягаемой пары возвратнопоступательного движения.

К основным факторам, определяющим надежность работы уплотнений, относятся:

1. Конфигурация и размеры канавок

Необходимые сведения по этим параметрам приведены в описаниях каждого вида уплотнений.

2. Отклонения формы и расположения поверхностей

Некруглость поверхностей сопрягаемых пар (цилиндр-поршень, шток-букса) должна быть в пределах допуска на соответствующие диаметральные размеры, а биение поверхностей канавок под уплотнения относительно базовых уплотняемых поверхностей не должно превышать 0,05... .0,10 мм. Биение поверхностей канавок под опорно-направляющие кольца должно быть не более 0,03 ...0,05 мм.

3. Зазор между поверхностями уплотняемых деталей

При назначении зазора необходимо исходить из двух основополагающих требований:

- а) величина зазора между уплотняемыми поверхностями должна предотвращать возможность их металлического контакта (минимально допустимый зазор);
- б) в то же время с целью исключения выдавливания уплотнения, а также его экструзивного износа и разрушения на стороне, не подверженной давлению, величина зазора не должна быть больше определенного значения (максимально допустимый зазор).

Предполагая, что диаметры цилиндра и штока являются заданными, ниже приведены формулы для расчета диаметров ответных деталей (поршень, букса), в которых выполнены посадочные места под опорно-уплотнительные элементы. Расчетная схема дана на рис.5.

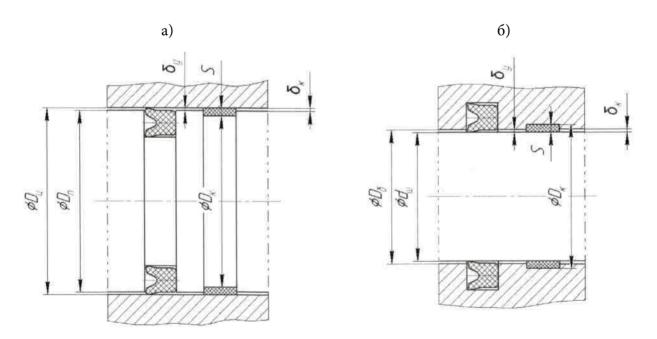


Рис.5 Опорно-уплотнительный узел: а) поршня; б) штока

3.1. Обеспечение минимально допустимого зазора $\delta_{\min} \ge 0$.

Для узла уплотнения штока:

$$\begin{split} &D_{6\,\text{min}} \geq D_{k\,\text{max}} - 2S_{\text{min}} + 0.5J_{6,} \\ &\text{где} \ D_{\kappa\,\text{max}} = D_{\kappa} + ES(D_{\kappa}); \end{split}$$

 $D_{_{\rm K}}$ - номинальное значение диаметра посадочной канавки под опорное кольцо в буксе;

 $\mathrm{ES}(\mathrm{D}_{_{\!\scriptscriptstyle{K}}})$ - верхнее предельное отклонение $\mathrm{D}_{_{\!\scriptscriptstyle{K}}};$

$$S_{min} = S-ei(S)-\Delta S;$$

S - номинальное значение толщины опорного кольца;

ei(S) - абсолютное значение нижнего предельного отклонения S;

 ΔS - допустимый износ опорного кольца при эксплуатации;

 $\boldsymbol{J}_{\!_{\boldsymbol{6}}}$ - радиальное биение $\boldsymbol{D}_{\!_{\boldsymbol{K}}}$ относительно $\boldsymbol{D}_{\!_{\boldsymbol{6}}}.$

Для узла уплотнения поршня:

$$egin{aligned} & D_{_{\text{N}\,\text{min}}} + 2S_{_{\text{min}}} - 0,5 \ J_{_{\text{N},}} \\ \text{где } & D_{_{\text{K}\,\text{min}}} = D_{_{\text{K}}} - ei(D_{_{\text{K}}}); \end{aligned}$$

Значение S_{\min} определяется так же, как и для узла уплотнения штока.

Следует отметить, что величина минимального зазора определяется выступанием опорного кольца над поверхностью $D_{_6}$ ($D_{_n}$) и не зависит от диаметра $d_{_{11}}$ ($D_{_{11}}$) ответной детали сопрягаемой пары.

3.2. Обеспечение максимально допустимого зазора δ_{max}

Максимально допустимый зазор δ_{max} определяется рабочим давлением и указан в таблицах мест установки для каждого типа уплотнения с учетом материала, из которого уплотнение изготавливается.

С учетом недопустимости превышения этого зазора формулу для определения $D_{_{6max}}$ в узле уплотнения штока можно записать в следующем виде:

$$D_{6 \text{ max}} \le d_{\text{m min}} + 2\delta_{\text{max}} - f_{6 \text{ max}} - J_{6},$$
где $d_{\text{m min}} = d_{\text{m}} - ei(d_{\text{m}});$

d... - номинальное значение диаметра штока;

еi(d_{...})-абсолютное значение нижнего предельного отклонения d_{...};

 $f_{6\,{
m max}}$ -максимальный люфт в соединении штока и опорного кольца;

$$f_{6 \text{ max}}^{\text{o max}} = D_{\text{K max}} - 2S \text{ min} - d_{\text{III min}}$$

Выражения для подсчета $D_{_{\rm K\,max}}$ S min приведены в п.3.1.

 J_6 -радиальное биение D_{κ} относительно D_6 .

Формула для определения $D_{n \, min}$ в узле уплотнения поршня имеет вид:

$$D_{n} \min \ge D_{u \max} - 2\delta_{\max} - f_{n \max} - J_{n}$$

где
$$D_{_{\text{II} max}} = D_{_{\text{II}}} + ES(D_{_{\text{II}}});$$

$$f_{\text{m max}} = D_{\text{m max}} - D_{\text{k}} \text{ min} - 2S \text{ min}$$

Выражения для подсчета $D_{_{\rm K}}$ min, S min приведены в п.3.1.

 $\boldsymbol{J}_{\!_{\boldsymbol{n}}}$ - радиальное биение $\boldsymbol{D}_{\!_{\boldsymbol{\kappa}}}$ относительно $\boldsymbol{D}_{\!_{\boldsymbol{n}}}.$

Примечание.

Поля допусков на диаметры сопрягаемых деталей и посадочные места под опорноуплотнительные элементы приведены в таблицах мест установки уплотнений. Остальные значения расчетных параметров можно принимать равными:

- радиальное биение D_{μ} относительно $D_{\mu}(D_{\mu})$ 0,05 мм;
- нижнее отклонение толщины опорных колец 0,1 мм;
- допустимый износ опорных колец ΔS 0,05 мм.

4. Качество поверхностей гильзы, штока

Частота обработки поверхностей гильзы и штока определяет надежность и долговечность работы уплотнений.

Оптимальным является значение шероховатости R_a 0,1 ... 0,2. Шероховатость поверхности R_a 0,4 является предельно допустимой. Уменьшение шероховатости ниже R_a 0,05 экономически нецелесообразно и технически неоправданно, т.к. при этом уменьшается объем заполненных маслом микрокамер на уплотняемой поверхности и возрастает адгезионная составляющая трения.

Важное значение имеет характер микрорельефа поверхности, определяемый методом обработки. Микронеровности должны иметь плавное округление вершин, что достигается выглаживанием, роликовой раскаткой или полированием и характерны для зеркальных поверхностей. Острые микронеровности, свойственные матовым поверхностям после шлифования и грубого хонингования, способствуют быстрому износу уплотнений.

Твердость материала штока и цилиндра должна быть достаточной, чтобы исключить появление продольных рисок от абразивных частиц загрязнений и трения в опорах.

Гильзы цилиндров обычно изготавливаются из улучшаемой стали и имеет твердость HB 240...285.

Штоки должны иметь твердость не ниже HRC 45 и быть защищенными от коррозии твердым хромированием с толщиной слоя не менее 24 мкм.

5. Качество используемого масла

В гидросистемах мобильных машин должны применяться гидравлические масла, обладающие целым комплексом эксплуатационных свойств, одним из которых является совместимость с материалами уплотнений. С целью обеспечения требуемой долговечности уплотнений масла должны быть без механических примесей и иметь чистоту не грубее 14 класса по ГОСТ 17216.

Применение масел, не соответствующих необходимым требованиям, сокращает ресурс работы уплотнений, приводит к неоправданным дополнительным затратам на обслуживание и ремонт машин. На основании многолетнего опыта эксплуатации машин с объемным гидроприводом рекомендуются к использованию следующие марки гидравлических масел:

МГ-15В (ВМГЗ по ТУ 38-101479-00) - в зимнее время; МГЕ-46В (МГ-30 по ТУ 38-10150-79) - в летнее время.

МЕТОДЫ КОНТРОЛЯ ПОСАДОЧНЫХ МЕСТ

Надежность работы и срок службы уплотнений во многом зависит не только качества обработки поверхностей уплотняемых деталей, но и от тонкости выполнения и шероховатости поверхностей мест установки опорно-уплотнительных элементов. Степень герметизации определяется чистотой контактирующих с уплотнениями поверхностей и достигается заполнением всех микронеровностей и дефектов материалом уплотнения. Боковые поверхности канавок рекомендуется обрабатывать с шероховатостью Ra=1,6...3,2 мкм, данная поверхность должна иметь чистоту не грубее Ra=1,6 мкм.

Размеры канавок назначаются с учетом относительной деформации уплотнений и необходимого контактного давления во всех условиях эксплуатации. Для контроля размера канавок используется как универсальный, так и специализированный мерительный инструмент в виде пластинчатых и пробковых калибров, а также разрезных закладных колец.

Оценка шероховатости поверхностей может осуществляться с помощью оптических приборов контактного (профилометры, профилографы) и бесконтактного (микроскопы, микроинтерферометы) типов. Широко используется метод сравнения поверхности изделия со стандартными образцами шероховатости. При этом стандартные образцы должны быть изготовлены из того же материала, что и деталь, с применением тех же методов механической обработки (точение, шлифование и т. д.). При визуальном контроле правильные результаты получаются только для поверхностей Z-8 класса шероховатости (Ra=1,25...0,63 мкм). Контроль с помощью пулы дает правильные результаты до 9-го класса шероховатости (Ra=0,32мкм). При контроле с использованием микроскопа можно получить правильные результаты даже для поверхностей выше 9-го класса чистоты.

В отдельных случаях дл труднодоступных мест может быть применен метод слепков. Его сущность состоит в том, что по определенному рецепту изготовления специальная масса (воск, парафин, масляная гуттаперия) с усилием прикладывается к поверхности измеряемой детали. После того как масса застынет, она легко отделяется от поверхности, и повторяет ее профиль и все неровности. Измерив шероховатость поверхности слепка, можно определить параметры шероховатости проверяемой поверхности. Наилучшие результаты по воспроизводимости дают слепки из масляной гуттаперии. Такая масса при нагреваниидо 90°С становится высокопластичной, что позволяет получить форму тончайших контуров детали.

РАЗМЕРЫ И ДОПУСКИ

						Доп	уски						
разм	Номинальные Пруток (допуски по внешней поверхности) размеры (0,001 mm) в mm							Труба (допуски по внутренней поверхности) (0,001 mm)					
ОТ	до	e9	f7	f8	f9	h8	h9	h10	h11	Н8	Н9	H10	H11
1,6	3	-14	-6	-6	-6	0	0	0	0	+14	+25	+40	+60
1,0		-39	-16	-20	-31	-14	-25	-40	-60	0	0	0	0
3	6	-20	-10	-10	-10	0	0	0	0	+18	+30	+48	+75
		-50	-22	-28	-40	-18	-30	-48	-75	0	0	0	0
6	10	-25	-13	-13	-13	0	0	0	0	+22	+36	+58	+90
	10	-61	-28	-35	-49	-22	-36	-58	-90	0	0	0	0
10	18	-32	-16	-16	-16	0	0	0	0	+27	+43	+70	+110
	10	-75	-34	-43	-59	-27	-43	-70	-110	0	0	0	0
18	30	-40	-20	-20	-20	0	0	0	0	+33	+52	+84	+130
		-92	-41	-53	-72	-33	-52	-84	-130	0	0	0	0
30	50	-50	-25	-25	-25	0	0	0	0	+39	+62	+100	+160
		-112	-50	-64	-87	-39	-62	-100	-160	0	0	0	0
50	80	-60	-30	-30	-30	0	0	0	0	+46	+74	+120	+190
	00	-134	-60	-76	-104	-46	-74	-120	-190	0	0	0	0
80	120	-72	-36	-36	-36	0	0	0	0	+54	+87	+140	+220
	120	-159	-71	-90	-123	-54	-87	-140	-220	0	0	0	0
120	180	-85	-43	-43	-43	0	0	0	0	+63	+100	+160	+250
120	100	-185	-83	-106	-143	-63	-100	-160	-250	0	0	0	0
180	250	-100	-50	-50	-50	0	0	0	0	+72	+115	+185	+290
160	230	-215	-96	-122	-165	-72	-115	-185	-290	0	0	0	0
250	315	-110	-56	-56	-56	0	0	0	0	+81	+130	+210	+320
	313	-240	-108	-137	-186	-81	-130	-210	-320	0	0	0	0
315	400	-125	-62	-62	-62	0	0	0	0	+89	+140	+230	+360
	400	-265	-119	-151	-212	-89	-140	-230	-360	0	0	0	0

